COUNCIL AND OFFICERS 1 DECEMBER 2011

President

SIR NEIL COSSONS, O.B.E., M.A., F.S.A.

Vice-Presidents

M. UNA REES, B.A., Ph.D.
B. S. TRINDER, M.A., Ph.D., F.S.A.
ERNIE JENKS
MADGE MORAN, F.S.A.

Elected Members

FRANCESCA BUMPUS, M.A., Ph.D. PENNY WARD, M.A., M.I.F.A.
NEIL CLARKE, B.A. ROGER WHITE, B.A., Ph.D., M.I.F.A.
ROBERT CROMARTY, B.A. ANDY WIGLEY, B.Sc., M.A., P.C.H.E., Ph.D.

Chairman and Acting Hon. Treasurer

JAMES LAWSON, M.A., Westcott Farm, Pontesbury, Shrewsbury SY5 0SQ

Hon. Secretary and Hon. Publications Secretary

G. C. BAUGH, M.A., F.S.A., Glebe House, Vicarage Road, Shrewsbury SY3 9EZ

Hon. Gift-Aid Secretary

B. SHERRATT, 11 Hayton View, Ludlow SY8 2NU

Hon. Membership Secretary

W. F. Hodges, Westlegate, Mousecroft Lane, Shrewsbury SY3 9DX

Hon. Editor

57 Kynaston Drive, Wem, Shrewsbury SY4 5DE

Hon. Editor of the Newsletter

HUGH HANNAFORD, M.I.F.A., 42 North Street, Shrewsbury SY1 2JJ

Joint Hon. Meetings Secretaries

DAVID PANNETT, B.A., Merton, Shepherds Lane, Bicton, Shrewsbury SY3 8BT
DAVID POYNER, M.A., Ph.D., 136 Hoo Road, Kidderminster DY10 1LP.
The Council is not responsible for any statement made, or opinion expressed, in the Transactions of the Society
CONTENTS

Editor’s Introduction ... 1

Sharpstone Hill and Meole Brace in the Iron Age and Roman Periods: Introduction,
by Roger White and Andy Wrigley ... 2

An Engineered Iron Age Road, Associated Roman Use (Margary Route 64),
and Bronze Age Activity Recorded at Sharpstone Hill, 2009,
by Tim Malim and Laurence Hayes ... 7

The Walls of Troy: A Classical Labyrinth at The Wall, Kynnersley,
by Caroline Malim and Tim Malim ... 81

Front Cover: Sharpstone Hill Road Looking South-eastwards towards The Wrekin on the Skyline (Photograph by
Laurence Hayes).

White in the moon the long road lies,
The moon stands blank above;
White in the moon the long road lies
That leads me from my love.

Still hangs the hedge without a gust,
Still, still the shadows stay:
My feet upon the moonlit dust
Pursue the ceaseless way.

The world is round, so travellers tell,
And straight though reach the track,
Trudge on, trudge on, ‘twill all be well,
The way will guide one back.

But ere the circle homeward hies
Far, far must it remove:
White in the moon the long road lies
That leads me from my love.

(A. E. Housman, A Shropshire Lad, stanza XXXVI.)
NOTES ON CONTRIBUTORS

Ben Gearey
Ben Gearey, B.A., M.Sc., Ph.D., is Project Manager and Research Fellow in Environmental Archaeology at the University of Birmingham. He is actively involved in research with interests in the palaeoenvironmental and archaeological record of wetland landscapes, in particular raised mire systems, the geoarchaeology of alluvial landscapes, and palynological approaches to Holocene landscape change.

Pam Grinter
Pam Grinter, Ph.D., is an external specialist in Archaeobotany for Birmingham Archaeo-Environmental.

Laurence Hayes
Laurence Hayes is an Associate Archaeologist with SLR Consulting Ltd. Since graduating from Liverpool University with a degree in Geography and Archaeology in 2000 he has worked for archaeological units at National Museums Liverpool, Gifford (Chester) and SLR (Warrington), directing excavations on sites of all periods in commercial, academic and outreach spheres. Laurence has recently published papers on excavations at Wat’s Dyke, Gobowen, Chester, and a synthesis of excavations in medieval small towns across Cheshire.

Alice Lyons
Alice Lyons, B.A., M.A., M.I.F.A., is a Project Officer for Oxford Archaeological East. She has worked in East Anglia for many years as a post-excavation researcher with a particular interest in the Latest Iron Age and Romano-British periods. She has a specialism in pottery analysis and her research has focused on the transition between Iron Age and Roman pottery manufacturing technology.

Richard Macphail
Richard Macphail, B.Sc., M.Sc., and Ph.D., is a Senior Research Fellow at the Institute of Archaeology, University College London. His research interests have focused on pedology and soil micromorphology, and, although he has worked all over the world, his UK research has included studies on the origins of Dark Earth formation, and contributions to the experimental earthwork project at Overton Down and Wareham.

Caroline Malim
Caroline Malim has been an archaeologist for over 20 years, specialising in archaeological illustration and public outreach projects. She has a combined B.A. in Industrial Archaeology, Astronomy, Art and Design, a P.G.C.E. in Religious Education and History, and an M.Phil. (Cantab.) in Heritage Management. She is currently a Senior Illustrator and Designer at SLR Consulting, and previously held similar posts at the AFU, Cambridgeshire County Council and BUFAU. Caroline has recently produced a number of interpretation panels for Shropshire and surrounding counties.

Tim Malim
Tim Malim is technical discipline manager for archaeology and heritage at SLR Consulting, based at Mytton Mill. With over 30 years experience in this country and abroad, he has published widely and is a Fellow of the Society of Antiquaries, a Member of the Institute for Archaeologists, and a graduate from the Institute of Archaeology, London University. Recent work in Shropshire has included the dating of Wat’s Dyke, published in Anglo-Saxon Studies in Archaeology and History, 15, 2008.

Peter Marshall
Peter Marshall, B.A., Ph.D., is an archaeologist who uses mathematical modelling of scientific dates to improve the chronologies of archaeological sites.

Roz McKenna
Roz McKenna is an external specialist in Archaeobotany for Birmingham Archaeo-Environmental.

David Peat
David Peat is a Technician in the Luminescence Laboratory at the Research Laboratory for Archaeology and the History of Art, Oxford University.

Jean-Luc Schwenninger
Jean-Luc Schwenninger is Head of the Luminescence Laboratory at the Research Laboratory for Archaeology and the History of Art, Oxford University.
David Shotter
David Shotter, B.A., Ph.D., F.S.A., is Professor Emeritus (History) at Lancaster University. His research has followed three main areas of interest: the collapse of the Roman republic and development of centralized government, the archaeology and history of early Britain, and Roman numismatics.

David Smith
David Smith, M.A. (Cantab.), M.A., Ph.D., F.R.E.S., is a lecturer in environmental archaeology at the University of Birmingham, specialising in palaeoentomology. His main research interests concern the interpretation of insect remains from the archaeological record.

Roger White
Roger White, B.A., Ph.D., M.I.F.A., is a Senior Lecturer at the Institute of Archaeology and Antiquity of the University of Birmingham and Academic Director of the Ironbridge Institute. He is a member of the Council of this Society.

Andy Wigley
Andy Wigley, B.Sc., M.A., P.C.H.E., Ph.D., is a landscape archaeologist, at present engaged on the Shropshire Historic Landscape Characterisation (HLC) Project for Shropshire Council. He has conducted research into the Bronze and Iron Age periods of Shropshire and the Marches, and he is a member of the Council of this Society.
NOTES FOR CONTRIBUTORS

All contributions should be submitted on CD. A hard copy should also be provided. The author should, where necessary, provide a list of illustration captions and table titles, including acknowledgements and copyright where applicable. It is the author’s responsibility to obtain permission for the use of copyright materials. In archaeological reports English Heritage guidelines may be followed, including Harvard (author date) style. If this is adopted the bibliographical reports should follow the examples below:

Biddle, M., 1978: *Winchester Studies*

Other contributors should employ endnote citations following the examples below:

PRO: E302/1/5-6
VCH Salop, 1, 337

Contributions should be sent to The Editor, 57 Kynaston Drive, Wem, Shrewsbury SY4 5DE.
Telephone 01939-234777
Electronic mail: williamprice@talktalk.net
SOCIETY PUBLICATIONS FOR SALE

Transactions

<table>
<thead>
<tr>
<th>Volumes</th>
<th>Price (£)</th>
<th>Price (£) to Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>59 (2)–59 (3)</td>
<td>£3</td>
<td>(£2.70 to members)</td>
</tr>
<tr>
<td>60</td>
<td>£2.50</td>
<td>(£2.25 to members)</td>
</tr>
<tr>
<td>61</td>
<td>£6</td>
<td>(£5.40 to members)</td>
</tr>
<tr>
<td>63</td>
<td>£2</td>
<td>(£1.80 to members)</td>
</tr>
<tr>
<td>64</td>
<td>£4</td>
<td>(£3.60 to members)</td>
</tr>
<tr>
<td>66–71</td>
<td>£6</td>
<td>(£5.40 to members)</td>
</tr>
<tr>
<td>73</td>
<td>£5</td>
<td>(£4.50 to members)</td>
</tr>
<tr>
<td>74–79</td>
<td>£12</td>
<td>(£10.80 to members)</td>
</tr>
<tr>
<td>80</td>
<td>£15</td>
<td>(£13.80 to members)</td>
</tr>
<tr>
<td>81</td>
<td>£10</td>
<td>(£9 to members)</td>
</tr>
</tbody>
</table>

The Cartulary of Lilleshall Abbey,
edited by U. Rees (1997) £10 (£9 to members)

Greenwood’s Map of the County of Salop 1827

CD £16

Printed sheets £16.50

Parish registers. The registers of Acton Scott, Bishop’s Castle, Silvington, Upton Cressett, Wellington (part 1), and a few others are available. Apply to the Hon. Publications Secretary for prices, etc.

The prices for *Greenwood’s Map* (for which there is no members’ discount), include packing and postage; all the other prices do not.
In view of the important discoveries presented in this Report on the excavations at Sharpstone Hill, and discussed by Roger White and Andy Wigley in their introductory paper, the Council of this Society resolved to publish the Report as a separate volume in this series of Transactions.

The Society and the contributors are grateful to Tarmac for receipt of a generous grant towards the printing costs of this volume.

I have taken the opportunity of including also a Report by Caroline and Tim Malim on their work at The Wall, Kynnersley, with some intriguing suggestions for further interpretation of the purpose of the site.
SHARPSTONE HILL AND MEOLE BRACE IN THE IRON AGE AND ROMAN PERIODS

INTRODUCTION

By ROGER WHITE\(^1\) AND ANDY WIGLEY\(^2\)

The discoveries attendant on the excavation of the Roman road line westwards from Wroxeter to Pennal raise important issues concerning our understanding of the Iron Age in the central Severn basin and the Iron Age to Roman transition. These issues are discussed in detail in the report, but it is crucial to appreciate the overall context of the road, with archaeological work since the 1960s providing, for Shropshire at least, an unusually full picture of the Iron Age and Roman landscapes through which it was laid. The purpose of this short contribution is partly to set the scene for the detailed discoveries reported on elsewhere in this volume but also to explore some of the implications of the dating issues and environmental sequences which the excavation uncovered.

Geological and Archaeological Context

Sharpstone Hill is a low eminence (104m. OD) immediately south of Shrewsbury and to the east and south of the Rea Brook, a tributary of the River Severn, which joins with that river immediately to the south of the former Abbey of Shrewsbury, by the English Bridge (Figure 1). Geologically, it is formed of pre-Cambrian greywacke (a form of sandstone) between conglomerates, all of the Bayston-Oakswood Formation, Wentnor Group. Sharpstone Hill thus shares its geology with Long Mynd to the south, with Lyth Hill immediately to the west, on the other bank of the Rea Valley, and with Haughmond Hill to the north of Shrewsbury (Toghill 2006, 67). Overlying these much weathered hills are the later Carboniferous era sandstones of either the Coed-yr-Allt or Keele Beds which change to Permian era sandstones underneath Shrewsbury and Wroxeter (Earp and Hains 1971, 82–5; Toghill 2006, 180–1). All the settlements which will be discussed in this section lie on the carboniferous deposits around Sharpstone Hill. Overlying this basal geology is a thick deposit of glacial till (Mercian Mudstone) which comprises mixed sands and gravels with pockets of thick red clay and occasional kettle holes with associated peaty deposits. Locally the glacial evidence can be quite complex, given the existence of separate tongues of glacial ice within the individual valleys of the Rea and Severn, in addition to the main glaciers advancing into the region from the Welsh massif and from the Irish Sea (Toghill 2006, 237–9; fig. 176). The soils overlying the carboniferous measures are thus relatively free-draining and fertile while the pre-Cambrian rocks are suitable only for scrub and heath.

Prior to the 1960s, archaeological work was restricted to the intermittent observations and records compiled by Lilian (Lal) Chitty between the wars and immediately after the Second World War (e.g. Chitty 1925). She was a keen collector and recorder of stray archaeological finds (mostly flints and metalwork) and was a tenacious and perceptive observer of field archaeology, as was demonstrated in her work with Sir Cyril Fox on Offa’s Dyke. Her primary interventions in this area were her record of discoveries at the Burgs Hillfort at Bayston Hill (Chitty 1957/60). More systematic investigations only really began with the research of W. E. Jenks, an avocational archaeologist based in the village of Bayston Hill, located astride the A49 south of Shrewsbury. His researches have primarily focused on Bayston Hill and its surroundings, but they also extended to Shrewsbury itself, and he has been a keen observer and recorder of all archaeological sites in the area for nearly 50 years, particularly where disturbances such as building works or agriculture located archaeological remains.

W. E. Jenks's principal excavations in this area were the first on any lowland prehistoric sites in central Shropshire (Carver 1991) and were published by him in collaboration with Philip Barker and Regina Haldon
Figure 1: Location map (superimposed material drawn by Caroline Malim).
ROGER WHITE AND ANDY WIGLEY

(Barker, Jenks and Haldon, 1991) which focused on a number of sites adjacent to the route of the existing 1930s Shrewsbury bypass (now Otley Road and Roman Road). The article covers in particular Sharpstone Sites A–E which comprised:

A Middle Bronze Ages barrows, Bronze Age / Iron Age field system, Iron Age enclosure
B Bronze Age barrow and cremation cemetery
C Roman ditches (environmental sample)
D Neolithic ditch; Roman period surfaces
E Iron Age / Roman large double-ditched enclosure

With the redevelopment of the Meole Brace area contingent on the construction of the new A5 bypass around Shrewsbury and the Meole Brace retail park, an extensive programme of developer-funded excavation was undertaken between 1988 and 1994 (Ellis et al. 1994). This located an extensive Roman roadside settlement on either side of Margary 64 which appeared to have been occupied from the first to the fourth centuries (Hughes 1994) and confirmed the line of the road itself at two points west of the roadside settlement (Hannaford 1994, 70). The site still survives under the park-and-ride car park, as has been shown during monitoring work (Hannaford and Phillpotts 1994; cited in http://archaeologydataservice.ac.uk/archsearch/record.jsf?titleId=82947). In later work, a pottery kiln producing Severn Valley ware of third–fourth century date was found just to the south of the site near the Moneybrook by W. E. Jenks during his informal monitoring of a pipeline excavation (Evans, Jenks and White 1999). Earlier activity was demonstrated by Gwilym Hughes, who excavated a Neolithic pit complex and a Bronze Age round barrow in advance of its destruction by a proposed roundabout for the retail park (Hughes and Woodward 1995) and a double-ditched barrow, which lay to the south of the first, investigated in a training excavation between 1994 and 1996. This feature, known as The Knowles, had a complex evolution comprising Beaker period activity pre-dating the barrow, a ring-cairn with a single ditch, with cremations perhaps of Early Bronze Age date, and then a round barrow constructed over the remains of the cairn with another single ditch (the previous ditch being backfilled). This also was Early Bronze Age in date (http://archaeologydataservice.ac.uk/archsearch/record.jsf?titleId=82947). This monument still survives in the landscape.

Between 1994 and 1997 the Meole Brace area was within the study area of the Wroxeter Hinterland Project and, although no work was done in the immediate vicinity of Sharpstone Hill, exploration of the adjacent Rea Valley was undertaken, including small-scale evaluation excavations of an Iron Age–Roman enclosure at Nobold and the full-scale excavation of Whitley Grange Roman villa (Gaffney and White 2007, 87–90; 95–142). Lastly, as part of the development of the new Shrewsbury Town Football Club stadium, the Sharpstone E site was re-excavated. This confirmed the Late Iron Age date for initial establishment with occupation lasting until around the third century AD (ibid, 93–5).

Since 2003 metal detectorists have reported a significant number of Roman objects, broadly derived from the area around Bayston Hill, to the Portable Antiquities Scheme (Peter Reavill, pers. com.). These mainly comprise brooches and coins but also include a fine copper alloy enamelled seal box lid, and are broadly indicative of activity in the landscape around the Meole Brace roadside settlement.

The most recent activity has been clarification of the route of the road westwards from Wroxeter (Margary route 64, 1973, 344–5) in the stretch to Sharpstone Hill. It has been suggested that a primary route was briefly established prior to the creation of Wroxeter fortress that crossed the Severn at Atcham (White 2006, 155). This is neither proved nor disproved by the discoveries reported on here. Following the diversion of Margary 64 into Wroxeter consequent on the foundation of the fortress, Margary postulated a dog-leg that connected to the original route on the east side of Sharpstone. The evidence in this report establishes that this line is incorrect (Fig. 1). Instead, the route recently independently established by Toller from crop mark evidence and shown on Figure 1 is to be preferred as this coincides exactly with the excavated evidence (H. Toller, pers. comm; Evans et al. 2010, 321).

Analysis

Four main periods can be detected in the prehistoric to Roman era in the Sharpstone Hill area. The earliest dates to the late Neolithic and early-mid Bronze Age, roughly 3500–1500 BC, and is primarily related to the creation of burial sites. This includes the sites at Sharpstone A, B and D as well as the barrows excavated by Hughes at Meole Brace, including the Knowles. The second phase relates to Late Bronze Age/Early Iron Age field system and unenclosed settlement at Sharpstone Hill Site A. Third, from the fourth century BC and into the Roman period, ditched enclosures were established at Sharpstone Hill Site A and E, the former seemingly laid out in relation to the earlier field system. The Burgs hillfort presumably also fits into one or both of these brackets. Observations made
by Alan Tyler during building works in 1979 identified a substantial charred timber component within the rampart core, confirming Chitty’s earlier accounts of burnt rampart material (Tyler 1984). This may indicate that the hillfort was initially established in the Late Bronze Age or Early Iron Age, and perhaps remained in use, continuously or otherwise, during the Iron Age. We can also observe that the road discussed in this publication will have run equidistant between the Burgs and Sharpstone E. Strictly speaking, however, it remains undated and it would be unwise to speculate further. The final period, which can be characterised as the Romanised landscape even if it incorporates elements of the existing Iron Age settlement evidence, comprises the roadside settlement and adjacent kiln at Meole Brace, the road during its Roman phase of use as a route between Wroxeter and the forts placed at regular intervals reaching into what is now Wales and the villas of the Rea Valley at Whitley Grange, Cruckton and Lea Cross. There is evidence that these villas too were situated within a densely occupied landscape of enclosures that are presumably of Iron Age and/or Roman date (Gaffney and White 2007 274–5).

How do the discoveries reported upon here impact on the new Iron Age dating for the road which became Margary 64? The obvious implication is that the Roman engineers were essentially picking up an existing route once they crossed the Severn at Wroxeter but what were the destinations at either end of the road, and why had it been so heavily engineered? It is possible that the route was created for the purposes of cattle droving but this seems unlikely in that one does not normally need to provide an engineered road surface for droving livestock. Clearly, the intention was to convey heavy materials along the route. This might suggest either metal ingots – the road could be destined towards the copper deposits on Llanymynech Hill, for example or the lead ores of the Snailbeach/Shelve region (Toghill 2006, 107–111) – or, perhaps more probably, salt. We know that salt was traded from the salt springs in Cheshire (Nantwich, Middlewich, Northwich) in heavy, conical briquetage vessels, sometimes referred to as VCP (Very Coarse Pottery) (Morris 1985). The shape of these vessels suggests that they were attached in pairs across the backs of pack animals – mules or donkeys perhaps – and traded into the region. VCP has been found at Sharpstone E for example (Morris, 1991, 48) yet the transportation mechanism for these vessels has never been clear. Salt routes, of course, have a long history as it is an essential commodity and this seems the most plausible explanation for the existence of a road in the Iron Age.

Notes

1. University of Birmingham.
2. Shropshire Council.

Bibliography

Published Sources

Margary, I. D., 1973, Roman Roads in Britain (3rd edn.).
Toghill, P., 2006, Geology of Shropshire (2nd edn.).

Web Reference

Archaeology Data Service (ADS): http://archaeologydataservice.ac.uk/archsearch/ under ‘Meole Brace’ search term; accessed 27/7/11); specific records cited: PRN00014:
An Engineered Iron Age Road, Associated Roman Use (Margary Route 64), and Bronze Age Activity Recorded at Sharpstone Hill, 2009

By TIM MALIM AND LAURENCE HAYES

Abstract: Archaeological investigations undertaken in advance of a quarry extension in 2009 have revealed the physical remains of an ancient road crossing Sharpstone Hill. This road had been carefully engineered with cambered construction and imported river pebbles, compacted to make hard surfaces. In part it was founded on a mat of elder brushwood, and followed the line of an earlier trackway which had been used for driving stock. The road itself consisted of at least three separate stages of construction during its lifespan, increasing in size from 4.5m. to 7.14m. wide between the initial foundation and the final surface, and interspersed with episodes of colluvial activity. In its final phase of use flanking ditches and road zone boundary ditches were established, delineating a zone approximately 17m. wide. Although 2nd–3rd century ceramics were found in the fill of the boundary ditch, and a significant number of Roman coins were found (from a non-settlement location), the results from scientific dating prove that the road was prehistoric. Use of three radiocarbon samples for the brushwood mat and eight OSL samples from the stratigraphic sequence of road construction, and the application of Bayesian modelling to the results, has demonstrated that the road was from the Iron Age, with the trackway built 200 – 5 cal BC, the first stage road 125 cal BC – cal AD 35, the second stage road 110 cal BC – cal AD 70, and the final stage road 105 cal BC – cal AD 105, with an 82% probability that this phase was built prior to the Roman conquest. Further scientific dates from charcoal in pits show that during the Bronze Age activity in the area included woodland clearance and the erection of a large timber post in the central line of the later roadway, which might indicate an earlier origin for the road as a Bronze Age droveway. Soil micromorphological study has provided evidence for movement of stock animals during the initial Iron Age stages, and palaeoenvironmental study has shown landscape clearance, which perhaps led to a wetter local topographical environment. A late Iron Age field system was also identified, and evidence suggests that the line of the road influenced medieval cultivation. A later track, using gritstone from Sharpstone Hill rather than river cobbles, followed the alignment of the earlier road, and a Georgian coin of 1806 might provide a date for this final episode before colluvium covered the site. Within the wider landscape a co-axial pattern of lanes, paths and boundaries detected on historic mapping suggests a phase of landscape reorganization which is tentatively attributed to cadastre and possibly Romano-British estates within the Wroxeter hinterland.

Introduction

This article presents a description and interpretation of the results from a programme of archaeological investigation completed at Sharpstone Hill, near Shrewsbury (NGR SJ 496 092). The site works, undertaken by SLR Consulting on behalf of Tarmac, were conducted from 20 April until 1 July 2009 during the preliminary groundworks for an extension to Bayston Hill Quarry, and included an extensive excavation and monitoring of a suspected Roman road.

The investigation was required as a condition of planning consent granted for the construction of a screening bund and relocation of the existing processing plant at the quarry. A full record of the results from the investigations is available as an archive report (Hayes and Malim 2011), and the archive has been deposited with the Shropshire Museum Service. This archive report has also been submitted as the client report to the Historic Environment Record at Shropshire Council to enable discharge of the planning condition.
Site Description

The site comprises an irregular parcel of land c.35 ha. in size on the southeast flank of Sharpstone Hill (Figure 1a). The topography of the site drops to the south, to around 75m. AOD (Above Ordnance Datum). North and west of the site lies the existing Bayston Hill Quarry, and the development area comprised former agricultural fields overlooking the medieval settlement of Betton.

Sharpstone Hill has been subject to quarrying activity at several points in the past, but industrial operations and the formation of Bayston Hill Quarry began during the second half of the 20th century with the extraction of high quality gritstone. Sharpstone Hill is a ridge of very hard conglomerate stone (greywacke) aligned northeast-southwest with a maximum height of around 90m. AOD, to the southeast of which the drift geology is Devensian Till.

Archaeological Background

The earliest known evidence for activity in the local landscape comprised ditches and funerary monuments of Neolithic and Bronze Age date at Sutton, 800m. to the north of the quarry, as well as later Bronze Age field ditches in the same location (Hannaford 2001), and a Neolithic polished stone axe was discovered on the top of Sharpstone Hill in 1948. An ancient routeway (The Portway SA1268) is believed to run south-westwards along the ridge of Sharpstone Hill, connecting a crossing of the Severn near Sutton with the Long Mynd and beyond. In the Iron Age a multivallate hillfort known as 'The Burgs' was established along this routeway at the south-western end of Sharpstone Hill, and in the later Iron Age farmsteads were established around 800m. to the north of the site at Meole Brace. These continued to be occupied into the Romano-British period, when a road is believed to have been constructed leading from Wroxeter to Forden Gaer and Caersws, and beyond to Trefeglwys (Margary 1975, Route 64). This road formed the focus of investigation for the 2009 excavation, and it is known to have passed through an unenclosed settlement on the western side of Sharpstone Hill at Meole Brace, discovered during excavations for the new A5 bypass in the 1990s (Hughes 1994) (Figure 1b). A second Roman road has been postulated as running from Wroxeter to Meole Brace on a more direct route, crossing the north-eastern part of Sharpstone Hill (White 1998, 2; 2006).

In the medieval period the site was divided between two manors, those of Condover (covering the south-western half of the site) and Betton (the north-eastern half). Betton was later divided to create a separate manor of 'Betton Alkmere' in the 13th century in which a moated Scheduled Monument to the east of the site might have been the principal settlement (Hannaford 2001). In this period the excavation area probably fell within an area of rough pasture known as the 'Bulerugge' or Bull Ridges, comprising poorly drained clay soils. The 1840–5 tithe map indicates that some of the fields within the quarry extension area (but lying to the south of the excavation area) still preserved this name as ‘Burridges’.

John Rocque’s 1752 map of Shropshire shows a road running between Betton and Bayston Hill; the later OS mapping indicates the line of this road as a track passing across the area of the quarry extension to the south of the suggested Roman road. A second track is shown running along the south-eastern edge of the existing quarry, presumed to be part of the ancient Portway, and this has remained a public right of way into modern times.

Preliminary Investigations

As part of the planning application a desktop study (Hannaford 2001), a geophysical survey (Stratascen 2001), and a minimal programme of trial trenching (Cotswold Archaeology 2005) were undertaken. The survey was targeted on the approximate linear areas of two potential Roman roads, through use of a general magnetometer scan and then detailed surveys of five discrete areas; resistivity survey was also undertaken.

Geophysical Survey Areas 1–3

Within the general zone of the suspected Roman road (Margary 1975, Route 64) the magnetometry data showed linear anomalies running almost east-west down the slope of Sharpstone Hill (Figure 2). These were interpreted as cut features of possible agricultural origin (ridge and furrow), as well as several isolated anomalies with thermoremanent responses typical of hearths or kilns.

Geophysical Survey Areas 4 and 5

Magnetometry within the zone of White’s (2006) postulated road indicated little activity, whilst the resistivity data was interpreted as showing ridge-and-furrow ploughing following the orientation of the slope.
In July 2005 Cotswold Archaeology undertook a limited site investigation, with four trenches situated to intersect cropmark features and a further four to target geophysical anomalies. All trenches were machine excavated to a depth of between 0.3 and 0.4m., recording only ploughsoil and what was interpreted as underlying natural clay. No features of archaeological origin were noted, and no explanations were offered to explain the origin of the crop marks and geophysical anomalies.

In 2008 an earthwork survey was carried out along the line of the suspected Roman road (SLR, 2008a). During preparations for the survey it was noted that the line of the road was clearly visible as a cropmark on web-based colour aerial photographs, and so precise coordinates for its position were generated in GIS allowing the survey to follow its line accurately.

The topography within the western half of the road corridor comprised a slight ridge running along the higher ground of the survey area, which was interpreted as the physical line of the road’s *agger*. This ridge became more pronounced towards the middle of the field, and then descended rapidly through a linear depression to the eastern edge of the field.

The survey mapped the road in a straight line from west-northwest to east-southeast over a distance of approximately 400m. within the site boundary. The surveyed section of the road descended at a steady gradient from 91.6m. AOD in the northwest to 86m. AOD over a distance of c.220m., before it became steeper and descended to 75.4m. AOD over the remaining 165m. In total the road descended 16.2m. over a distance of 385m., a gradient of around 1 in 27.

Aims and excavation strategy

The aims and proposed methodology were outlined in a written scheme of investigation (SLR 2008b), approved by Shropshire County Council prior to the commencement of works. The aim was to investigate and record any archaeological remains encountered during the groundworks by two main approaches:

- topographic earthwork survey of the road corridor

![Figure 1b: Air photograph of the quarry with the cropmark of the ancient road, presumed to be of Roman date.](image-url)
Figure 2: Location of the geophysical survey area 2001, and details mapped during the initial watching brief of the soil stripping in 2009.
supervision of the topsoil strip of two 150m. wide corridors along both the known line of the suggested Roman road and also the second hypothetical road, plus excavation of selected areas as relevant, once surviving evidence for the road had been identified

Following the initial topsoil strip, several research aims were specified to steer the excavation strategy, with each having a set of subordinate objectives. The aims were to investigate the:

- method of road construction
- date of road construction
- use of the road
- evidence for roadside activity
- landscape and environment
- evidence for post-Roman activity

Methodology

The strategy of excavation is outlined below in the summary for each Excavation Area. Archaeological recording of excavated deposits followed standard practice through use of single context pro-forma record sheets, drawn plans and sections, and photography. A site notebook was also maintained and additional record sheets completed for specialist elements such as soil samples. Artefacts and ecofacts were collected and recorded stratigraphically. Metal-detector scans along the road, strip corridor and spoil heaps were also conducted systematically.

The sampling strategy was developed on site in consultation with a number of specialists, and included the collection of bulk samples of sediment for environmental analysis, waterlogged wood samples for species identification and assessment of technology, monolith samples for micromorphological analysis, and column samples for pollen analysis. Targeted samples of sediment and samples of charcoal were also collected to enable dating by Optically Stimulated Luminescence (OSL) and radiocarbon determination.

Additional geophysical surveys were carried out along the line of the road after initial topsoil removal to pick out any subtle archaeological features which were not visible in the stripped area, and to understand the structure and phasing of the road and outlying features.

A magnetometer and resistivity survey of the road corridor was carried out on 18 May 2009. A ground penetrating radar survey of the road was carried out on 6 June 2009. Specific emphasis was placed on identifying the presence of buried road surfaces and flanking ditches that might have been sealed by colluvium and thus be invisible at the exposed surface. Both surveys were undertaken by Stratascan (2009a and 2009b).

All survey data captured during the excavation, alongside the hand drawn plans, were entered into a GIS to allow detailed analysis of the landscape, site/feature layout and road dimensions. This approach also enabled layering results from previous investigations (geophysical prospection 2001, trial trenching 2005, and earthwork survey 2008) so that they could be analysed in comparison with the 2009 results.

Results from the Watching Brief

The first stage of the investigation consisted of a watching brief of two corridors 150m. wide centred on the lines of the known and postulated Roman roads.

On the first day of the watching brief three linear trenches were excavated across the line of each road to determine the exact extent, depth, nature of construction of the roads, and their state of preservation. This information was then used to guide the depth of the topsoil strip and avoid damaging significant archaeological remains. All machining was undertaken with 20 and 30 ton tracked excavators fitted with toothless buckets, the excavation starting from the centre-line of each road and working outwards.

There was no evidence for any kind of road within the line of the postulated route at the northern end of the site. Prominent ridge-and-furrow plough marks were visible which might have removed any earlier track, though this was considered unlikely, and a small collection of residual Roman ceramic material was found at the western end. No further excavation work was carried out in this corridor.

The watching brief along the known road identified surviving patches of road metalling with parallel flanking ditches, field systems and evidence of burning in outlying pits and spreads. The features identified by the end of the watching brief, including the alignment of the road and ditches, were used to determine areas of further investigation.
In the eastern half of the site patchy remnants of metalling were seen on the higher ground east of Area 5, with a continuation of boundary ditch (535) (Figure 8) indicating the continued straight course of the road for a further 34m. (Figure 2). A single battered coin was recovered as an unstratified object from within the line of the road (SF [Small Find] 10) (Figure 28), probably Flavian, indicating a later 1st century date.

At a distance of around 46m. to the east of Area 5 the road descended into a deepening depression or hollow way. The depression was visible on the ground surface as a fold in the hillside, observed in the earthwork survey in 2008. Excavation demonstrated that the hollow way was very much deeper, having been infilled with a large accumulation of ploughsoil from the hillside above. A sample excavation into this deposit towards the bottom of the hill demonstrated that it was approximately 14m. wide and up to 1.5m. deep.

Where the hollow way emerged onto level ground at the foot of the slope an isolated patch of pebbles (possibly a remnant of metalling) was seen 132m. to the east of Area 5. Faint parallel marks in the natural sand approximately 11m. apart might have marked the base of roadside ditches, but they had no depth on excavation, and became rapidly inundated by runoff from the excavations above. If the road continued to follow the orientation of these marks it would suggest that it passed Betton Strange around 100m. to the south. A slight rise in the hedge line at the base of the hill probably indicated where the hedge crossed the agger.

Results Summarized by Excavation Area

The second stage of investigation was open area excavation which focussed on six key areas of interest along the line of the road, labelled Areas 1–6 (Figure 2). The description and rationale for each of the six areas is included in the results section below.

In each of the chosen areas a combination of hand and machine excavation was used to record the road’s construction, both in plan and in section, and to record outlying features of archaeological interest.

Area 1

This extensive area measured approximately 75m. × 30m. and was located at the western end of the road on the higher ground to the west of Area 2 (Figure 3). Included in this area there were isolated features within and to either side of the road. The land sloped downwards from around 91m. AOD at the western end to 88m. AOD at the east end, a fall of 3m. over a distance of 75m.

Clearance of the overburden by machine demonstrated that ploughing activity had caused severe truncation of the road surface. Patches of cobbles were apparent, but little form was noted in any of the deposits. Given the poor quality of the road deposits these were not excavated further by hand, but, however, the limits of the road were surveyed with accompanying notes.

All the features in this area were discovered following the topsoil strip during the watching brief. The topsoil and thin subsoil were removed directly onto the natural boulder clay at a depth of approximately 0.3m. Three phases were detected: Bronze Age pits and a large post-pit, the road, and later pits. Burnt material was found in both Bronze Age and probable Roman pits. Two features had identifiable relationships with a roadside boundary ditch, and a further three features were within the line of the road.

Area 2

Area 2 comprised a 20m. wide strip across the line of the road, and was excavated at a point where the road preservation was poor so that a temporary haul road for construction traffic could be provided across the study area whilst fieldwork was still in progress.

As with Area 1, the majority of the features in this area had been truncated by agricultural activity which had resulted in the loss of the central portion of the road. The northern and southern flanks of the road had been preserved as shallow ditches, with a boundary ditch to the north (Figure 4).

The natural geology in this area comprised stiff red boulder clay with occasional fissures containing silts and degrading yellow sandstone. The topography sloped gradually down from the western end, at 88.45m. AOD, to 87.90m. AOD at the eastern end.

Despite considerable truncation, four distinct phases of activity were noted in this area buried beneath 0.42m. of overburden: construction of the road including flanking ditches and boundary ditches, rutting and repair of the road surface, the cutting of a possible drainage ditch into the infill of the flanking ditch along the southern edge of the road, and finally the deposition of overburden above the road. Though the road surface had been truncated,
Figure 3. Area 1 plan.
Figure 4
Area 2 plan.
Figure 5a: Area 3 plan.
flanking ditches to either side marked the width of the road surface, and outlying parallel ‘boundary’ ditches marked the full width of the road corridor.

Area 3

Area 3 comprised a 10m. length of the road (Figure 5a and b), 19.5m. to the east of Area 2. The area was originally selected to investigate a potential sub-Roman feature cut into the road surface identified during the watching brief, and to investigate the increased depth of the road construction to the east. The natural geology comprised firm reddish-brown clay to silty clay, sloping gradually down from 87.28m. AOD in the west to 87.06m. AOD in the east.

After hand-cleaning it was apparent that stonework originally interpreted as a possible structure was in fact part of the road metalling, and in total three phases of activity were observed in this area: the road construction, post-Roman road construction and modern deposition. By deduction a fourth phase can be added: post-Roman ploughing, which removed the road surface.

The surviving elements of the road consisted of flanking ditches 7.6m. apart (Figure 6), and boundary ditches marking out a road corridor 15.2m. wide, on either side of the *agger* which had been destroyed by later ploughing. The flanking ditches had been infilled with river cobbles, and ruts were apparent in [312], the southern ditch (Figure 7).

Area 4

Area 4 comprised a machine and hand excavated transect across the road at its deepest and best-preserved point. The transect was 33m. long and 5m. wide, oriented at right angles to the road. All the deposits were recorded in plan and in the east-facing section.

It was decided to use the section exposed in this area to obtain a suite of OSL dates because the phases of road construction were interspersed with deep, stratified layers of colluvium which would facilitate recovery of undisturbed samples.

The natural geology across the majority of this area comprised stiff blue/grey boulder clay developing to a reddish colour near to the surface, which was recorded at around 84.92m. AOD. The height of the upper surface of natural decreased beneath the road, at which point it was 1.85m. lower than the existing ground level; the depth of overburden was six times greater in this area than anywhere else on the site.
Figure 6 View along the southern edge of the road in Area 3 showing stone-filled flanking ditch [312].

Figure 7 Detail of the central section of the road in Area 3 facing west. Note the truncated road surface in the centre and evidence of ruts in the ditch [312].
In total nine phases of activity were identified. These include a buried soil, trackway, brushwood mat and two phases of Iron Age road construction interspersed with colluvial episodes, and a final phase of Late Iron Age – Roman road construction (see below in section on Detailed Results for the Iron Age Road Sequence).

Area 5

Area 5 comprised a 15m. length of the road (Figure 8) at the eastern limit of the preserved section which was hand-excavated to the underlying natural. On either side of the road at this location was a rectilinear field system; the more extensive southern system was recorded as a separate area (Area 6), while the less-well preserved northern system was included within Area 5.

The road sequence broadly mirrored that seen in Area 4, though there were no preserved organic remains below the road, suggesting that this was a drier location.

Eleven phases of activity were recorded in all. These included a buried land surface cleared by fire, three phases of Iron Age road surfacing interspersed with periods of soil accumulation, and a single phase of Late Iron Age – Roman road construction with an accompanying field system (see below in section on Detailed Results for the Iron Age Road Sequence).

The natural geology in this area comprised orange/brown boulder clay recorded at a height of 85.38m. AOD. 0.32m. of modern ploughsoil was removed by machine to expose the underlying archaeology.

Area 6

Area 6 was situated immediately to the south of Area 5, measuring approximately 30m. × 20m. The deposits here, suggesting pre-Roman activity and a Late Iron Age-Roman field system (Figure 9), were identified only following the final machining of overlying colluvium, exposing the underlying natural clay. This was a clean, bright orange and pale grey boulder clay, developing to a stiff red clay to the east.

Five phases of activity were recorded in this area, including possible Bronze Age pits, a burnt land surface and a later field system.

Detailed Results for Bronze Age Activity

Four Bronze Age pits and two probable ones of this date have been identified on the basis of radiocarbon dates and similarity in form. Four of these pits were found in Area 1, of which two were situated in the line of the later road (Figure 3).

Pit [023] was the largest feature in Area 1. The cut was sub-circular in plan, with a diameter of 2.2m. and a depth of 1.2m. The profile of the feature was unusual, having vertical sides which then stepped in at 0.8m. depth, leading to a narrow ‘pipe’ 0.7m. in diameter at the base (Figures 10a and 10b). The basal fill (030) was a mottled grey/brown silty sand up to 0.4m. deep. Although waterlogged this deposit contained no evidence of preserved organic remains. The overlying fill (029) was a mid grey/brown silty sand 0.3m. deep with occasional orange mottling and flecks of charcoal. This fill appeared to have been tipped into the pit from the west, and was waterlogged. Sample 31 was recovered from this deposit for assessment, which demonstrated that the charcoal was from birch, ash and oak timbers. A sample of oak charcoal was submitted for AMS dating, which yielded a Bronze Age date of 1420–1210 cal BC (Beta-273089; 3050±40 BP). A lens of black charcoal (028) was present within fill (029), lining the south-west quadrant of the pit.

Fill (027) was sealed by a final series of three deposits, (026) a mid brown silty clay up to 0.8m. deep, (025) a grey brown silty clay up to 0.5m. deep and (024), an ashen silty clay up to 0.4m. deep. Contexts (026) and (025) contained less burnt material, but the final fill (024) contained frequent charcoal and shattered stone fragments. Assessment of sample 30 from context (024) indicated that the charcoal had been derived from the burning of birch, as and oak. A sample of the oak charcoal was submitted for AMS dating which also yielded a Bronze Age date of 1690–1490 cal BC (Beta-273088; 3300±40 BP).

This shape suggests a post-pipe, albeit a very large one. It may have supported a monumental timber, but there are no other surrounding features which would indicate other timber supports.
Figure 9
Area 6 plan.
Pit [020] was oval in plan, measuring 1.3m. × 1m. oriented northwest-southeast, and was 0.27m. deep with steep sides and a flat base (Figure 11). The fill, (019), comprised a black silty clay with very frequent heat-shattered stone and charcoal. The south-western limit of the pit appeared to have been truncated by later bioturbation. Bulk sample 22 was retained from the fill, assessment of which demonstrated that it contained a high quantity of charcoal (identified as alder, birch, hazel, oak and hawthorn/apple). There was no evidence for the pit having had a domestic function. A sample of hazel charcoal was submitted for AMS dating which also returned a Bronze Age date of 1740–1520 cal BC (Beta-273087; 3340±40 BP). Pits [004] and [009] were also shallow irregular features, whilst two further pits ([621] and [623] identified in Area 6) were similar in character and therefore have been ascribed a probable Bronze Age date.

Detailed Results for the Iron Age Road Sequence

The best preserved sections of the road were found in Areas 4 and 5. Because of the wealth of data that the investigations produced for the construction, use, and disuse, and for the chronological development of the road, full details of the excavation results are reproduced below.
Figure 10b Pit [023], Photograph facing east.

Figure 11 Pit 20, Photograph of south-east facing section.
Buried Soil and Contemporary Environment: Area 4 Phase 1
The earliest deposit in this area comprised a dark grey/black buried soil horizon (430) beneath the line of the road. This layer survived to a depth of 0.2m., gradually grading into the natural grey boulder clay beneath. The layer was observed extending at least 7m. to the south of the road as it was observed in the base of ditch 401; the northern limit was not defined.

Two samples were recovered from the buried soil; sample 15 was a bulk sample for environmental analysis, and monolith sample 35 was recovered for micromorphological analysis. The latter indicated that this soil had been cleared by fire, with the black colouration derived from large amounts of particulate charcoal mixed into the soil matrix, with occasional charred woody roots and the presence of burnt sand and stone. The presence of earthworm burrowing suggests that at the time of clearance the local ground conditions had been dry. It is possible, however, that the removal of trees could have caused the local water table to rise, leading to boggier ground conditions later on.

Iron Age Trackway and Contemporary Environment: Area 4 Phase 2a
The earliest trackway deposit observed was a homogeneous loam within the line of the later road. Layer (428) was a soft, grey silty clay containing occasional small stones and flecks of charcoal. This was 0.1m. deep and to the south of the road the layer was possibly observed to continue as (431).

Micromorphological analysis of this deposit indicates that it was a trackway formed in situ under wet trampling conditions. The high quantity and unusually good preservation of calcitic dung/faecal spherulites mixed throughout the soil indicate that much of the traffic was by livestock, most likely sheep/goat. Bulk sample 19 from context (428) was processed which yielded both plant macrofossil and beetle remains. The plant macrofossils indicated that nettle, buttercup, sedge, bramble, dock and goosefoot were all present in the locality, an assemblage indicative of damp grassland and disturbed soils with no indication of local woodland. The faunal assemblage included dung beetles indicating the presence of livestock and a weevil associated with reed-sweet grass, a tall reed like herb that grows in or at the margins of wetlands.

OSL Sample 2 (recovered from context 428) suggested a wide date range for this trackway of between BC 191–149 AD.

Iron Age Brushwood Foundation Layer: Area 4 Phase 2b
Perhaps in response to worsening wet and unstable ground conditions after the earlier woodland clearance, a foundation layer for a more substantial track comprising a brushwood mat of small branches and twigs (410) had been laid on top of layer (428). This was 4.5m. wide and less than 40mm. thick. The brush had been laid haphazardly, with no indication of a pattern or use of vertical stakes to hold it in place (Figure 13b). The layer was waterlogged and well preserved, and eight samples were taken to determine the species of wood present and any other environmental indicators. The predominant species was elder (Sambucus), while micromorphological analysis demonstrated that there was micro-layered sedimentation of dung-rich soil in the voids between the brushwood. Three samples of wood were submitted to Beta Analytic for radiocarbon dating, the results of which are given in Table 1 below.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lab Code</th>
<th>Material</th>
<th>Radiocarbon Age (BP)</th>
<th>δ^{13}C (‰)</th>
<th>Calibrated Date (95% confidence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHQ5</td>
<td>Beta-265656</td>
<td>Wood (Sambucus sp.)</td>
<td>1980±40</td>
<td>-25.8</td>
<td>60 cal BC–cal AD 130</td>
</tr>
<tr>
<td>BHQ6</td>
<td>Beta-265657</td>
<td>Wood (Sambucus sp.)</td>
<td>2120±40</td>
<td>-26.4</td>
<td>360–40 cal BC</td>
</tr>
<tr>
<td>BHQ12</td>
<td>Beta-265658</td>
<td>Wood (Sambucus sp.)</td>
<td>2040±40</td>
<td>-25.9</td>
<td>180 cal BC–cal AD 60</td>
</tr>
</tbody>
</table>

Iron Age Trackway Stock-Trampled Deposits: Area 4 Phase 2c
Overlying the brushwood mat was a homogeneous layer of soft grey sandy silt (425), 4.8m. wide and 0.24m. deep. As with the trackway deposit (428), micromorphological analysis of (425) also indicated that the deposit contained phosphate redeposited as vivianite crystals which had been leached from dung in this layer, and probably also from the overlying metalled road surfaces.
Section through Roman Road Area 4

Figure 12 Iron Age road Area 4 stratigraphic sequence.
Figure 13a Iron Age road Area 4, photograph of section facing north-east; brushwood mat at base.

Figure 13b Brushwood mat [410], plan.
It is probable that this layer is redeposited, deliberately placed above the brushwood mat as part of the construction of the overlying trackway. This is because the absence of damage to the brushwood layer below suggests that animal trampling did not occur in this location. An alternative interpretation could be that this deposit was spread as a second trackway over the brushwood mat, and that churning of wet mud and dung from animals occurred at the surface of this deposit.

OSL sample 3 was taken from (425) giving a date range for deposition of BC 321–BC 1. Bayesian modelling of the OSL and radiocarbon samples in this phase indicate a date for construction of the track between 200–5 cal BC (95% probability) and probably 130–40 cal BC (68% probability).

Iron Age Road Construction, First Stage: Area 4 Phase 3

Trackway deposit (425) was sealed by a cambered road surface of sand, gravel and pebbles, with a shallow gully along its southern edge containing a row of stake holes (Figures 14a and 14b). The total width of the road was 5.3m. The surface stood at 85.97m. AOD.

The hardcore for this road, (424), comprised a tightly cambered deposit of light blue/grey silty sand and gravel 0.17m. deep, with small stones up to 50mm. in diameter. OSL sample 4 was taken from this deposit which gave a broad date range of BC 511 – 269 AD. A compacted stone surface had then been laid onto the hardcore, (423), comprising sub-rounded river pebbles up to 80mm. in diameter and a matrix of finer sand and gravel. OSL Sample 5 was taken from this layer, which also returned a broad date range, BC 191 – 189 AD.

Adjacent to the southern edge of the track was a shallow gully, cut [429], 1.2m. wide and 0.18m. deep with a concave base. Along its northern edge was a row of stake holes, [427], marking a possible fence line to retain the road surface. Six stake holes were excavated, spaced approximately 0.25m. apart. These were up to 80mm. in diameter and up to 0.18m. deep. The fills comprised silty clay with iron panning, presumably from water penetration. A fragment of waterlogged wood was recovered from hole [427] D (Sample 13) but it was too fragmentary to identify or date.

Ditch [429] was filled by (408), a mottled grey and orange sandy silt which also partially sealed the edge of track surface (423). OSL sample 1 was recovered from this deposit which gave an Iron Age date of BC 371–BC 11.

Bayesian modelling of the samples in this phase indicates that the road was constructed between 125 cal BC–cal AD 35 (95% probability) and probably 80–1 cal BC (68% probability).
Figure 14b Post-excavation shot of stake holes [427] facing south-east.
Colluvial Episode: Area 4 Phase 4
A period of deposition occurred following the construction of road (423) causing the surface to become almost completely buried.

To the north a thick deposit of colluvium (422) was banked-up against the road camber to a depth of 0.38m. The colluvium comprised friable silty sand with visible laminations of size-sorted particles and layers of iron pan, suggesting episodic in-washing of sediment from the hillside to the north.

On the southern side of the road, (419) a deposit of light grey sand and gravel with similar laminations and mineral accretions to those observed in (422) was recorded (Figure 15). This deposit was up to 0.3m. thick, banked up against the road surface (423) and tailing off to the south. The derivation of this layer is unclear; based on the surrounding topography it seems that this material is more likely to have been deliberately deposited against the edge of the road than washed in under natural conditions. If so then it may have formed part of the construction of the road above.

Iron Age Road Construction, Second Stage: Area 4 Phase 5
The second stage Iron Age road construction comprised a layer of hardcore sealing colluvium deposit (422), above which a new stone surface was set. The hardcore layer did not cover deposit (419) to the south of the road, perhaps suggesting that the southern edge was drier and firmer while the deeper colluvium to the north, retained by the camber of the earlier track, was wet and boggy. There were no ditches associated with this phase of construction.

The hardcore layer (420) comprised a uniform deposit of light grey sand and gravel up to 0.1m. deep. OSL sample 6 was taken from this make-up layer, suggesting a date range for the sediment of between BC 611 and BC 371. Such an early date may be attributable to bulk redeposition of excavated material to make the road foundations; this would have resulted in minimal exposure to sunlight during construction, resulting in an earlier OSL date for the sediment than the construction event it was designed to date. Because of this the sample was omitted from the modelling (see Scientific Dating Section below).

Colluvial Episode: Area 4 Phase 6
The overlying road surface (418) was a hard, broad deposit of firmly compacted river pebbles (up to 90mm. diameter) and gravel. The surface of the road stood at 86.25m. AOD, the maximum thickness of the agger measuring 0.27m. and tailing off to a depth of no more than 30mm. at the fringes. The full width of the road surface was 6.42m.

Figure 15 South-east facing section, Area 4. Colluvium sealing Iron Age road (black matting protecting brushwood in foreground).
Deposition of colluvium continued following the construction of the second Iron Age road. To the north a light grey silty sand (421) accumulated to a maximum depth of 0.25m., while to the south a deep layer of laminated sand and gravel was deposited (417). This layer was up to 0.7m. deep, and the exposed deposit extended at least 12m. to the south of the road.

OSL sample 7 was taken from layer (417) which indicated a date range for deposition of between BC 261 and BC 1. Bayesian modelling of the deposit sequence indicates that deposition above the second phase road occurred between 110 cal BC–cal AD 70 (95% probability) and probably 75 cal BC–cal AD 15 (68% probability).

Late Iron Age and Roman Road Construction, Third Stage: Area 4 Phase 7

The construction of this road included the creation of two boundary ditches to the north and south, marking out a corridor 17m. wide, and the laying of a new stone surface, but without a specific foundation deposit.

The northern boundary ditch, [402], was situated around 4m. to the north of the road edge. In profile it was straight sided with a flat base, measuring 0.66m. wide and 0.5m. deep. The basal fill (404) was a light grey silty clay 0.26m. deep, while the upper fill (403) was mottled with orange/brown sandy silt 0.34m. deep. These appeared to have accumulated naturally in the ditch and contained no artefacts. These lower fills had been truncated by a later recut, [405], which was 1.3m. wide and 0.7m. deep with steep sides and a flat base. The basal fill (407) was a light brown sandy clay up to 0.4m. deep, sealed by (406), a light grey silt also up to 0.4m. deep. This feature can be equated with ditch 211/213/309 seen in areas 2 and 3 further to the west, and also correlates with 535 and 536 in Area 5 where the recut diverged slightly from the original alignment. It is notable that further uphill the ditch had not been recut, so it is probable that it was only on the lower ground that continual in-washing of sediment required the ditch to be re-excavated.

The southern boundary ditch, [414], was situated 3.2m. to the south of the road edge. The cut was 1.36m. wide and 0.6m. deep with a ‘U’ shaped profile. The primary fill (416) was a light grey in-washed silt up to 0.12m. deep, sealed by brown sandy silt 0.38m. deep (415). This ditch was also observed in Area 5 ([532]) and in Area 3 as [315], giving a total visible length of c.190m.

The road surface, (413), comprised rounded river pebbles up to 90mm. in diameter, forming a layer 2.6m. wide and 0.2m. deep. The surface was in a very poor condition as a result of root and plough damage, as well as some possible rutting from traffic. Along its northern edge this surface directly overlay the earlier Iron Age road surface (418), possibly indicating that this phase was a partial repair to the road rather than a complete resurfacing, in which case the total width of the road at this time would have been 6.42m., with a distinct camber.

Associated with this phase of road construction was the development of a rectilinear field system, more clearly seen in Area 6. The system included a long ditch running parallel to the southern edge of the road, identified in Area 4 as [401] situated 3.2m. to the south of ditch [414]. The cut was 1.34m. wide and 1.02m. deep with steep sides and a concave base, which was seen to be cut into the buried soil (430). The ditch fill, context (400), was a very firm homogeneous grey/brown sandy clay.

Late Roman Ploughsoil over Road: Area 4 Phase 8

Following the final phase of road construction, the area was gradually covered by an accumulation of laminated sandy silt up to 0.9m. deep with lenses of iron panning (context 412). Due to the presence of plough scars perpendicular to the final road surface, it is likely that this deposit represents the development of a ploughsoil. This deposit contained the only artefact recovered from Area 4, a globular-headed copper pin broadly dated to the 2nd or 3rd century AD.

OSL sample 8 was taken from this layer. This gave a date range for deposition of BC 61–119 AD. Bayesian modelling of the deposit sequence indicates that deposition is likely to have occurred between 105 cal BC–cal AD 105 (95% probability) and probably 65 cal BC–cal AD 40 (68% probability), with an 82% probability that deposition occurred before the Roman conquest of Britain. This suggests that statistically all road deposits sealed by layer (412) were constructed prior to 43 AD. The artefactual evidence from surrounding features, however, as well as excavated evidence at sites such as Meole Brace, provides a terminus ante quem indicating that the road and ditches continued in use into the early-mid Roman period.

Post-Roman Track: Area 4 Phase 9

A trackway was constructed of loose stone chippings, distinct from the earlier road metalling of river cobbles, and it is likely that this material was sourced from an outcrop of the local conglomerate stone at the top of the hill. This deposit (411) was 4.3m. wide and up to 0.38m. deep, and represents the re-establishment of a track along the line of the road.

This may indicate that, despite the earlier road having fallen into disuse and having been ploughed over, the field system extant at the time the track was laid still reflected the old route of the road.
Figure 16 Iron Age road Area 5 stratigraphic sequence.
AREA 5 (Figure 16)

Land Clearance: Area 5 Phase 1
The natural clay was overlain by buried soil (533), a firm dark grey silty clay up to 0.16m. deep. This layer was most clearly visible beneath the road line, but became less easily discerned beyond its fringes. It is likely that this soil is the same deposit recorded as context (430) in Area 4 (Figure 12), cleared by fire perhaps for the construction of a trackway, and might also have included trampled deposits from use as a drove road.

Two charcoal spreads (546) and (547) (Figure 8) situated in the northern half of Area 5 to the north of the road are likely to have formed during this early phase of land clearance. (546) was irregular in plan, 1.2m. wide and 50mm. deep, comprising grey/brown mottled silty clay with frequent fragments of charcoal and occasional burnt stone. (547) was also irregular in plan, 2.4m. wide and 50mm. deep containing frequent charcoal fragments.

An intermittent and irregular spread of cobbles was observed to the west of (546). Having no form or obvious function, it is possible that this could represent the base of a stone stockpile for the creation of the road.

Iron Age Road Construction, First Stage: Area 5 Phase 2
The earliest stage of road construction comprised a cambered stone surface and make-up layers, with a shallow gully and fence line to the south.

The construction of the road comprised three layers of cambered hardcore supporting a stone surface. The basal make-up layer (559) was a compact deposit of stone and grey silty clay, sealed by layer (542)=(558) (Figure 17), a very firmly compacted deposit of grey/green silty sand and stone. The final make-up layer was a thin deposit of grey sand (541) up to 60mm. thick with lenses of bright orange iron panning. These are shown on the photograph (Figure 17), but were not differentiated during drawing of the section (Figure 16) and so are all included within a single label (557). The road surface (557) was a hard surface of small-to-medium rounded pebbles 30–100mm. in diameter. The total width of the road was 6.38m., with a camber 0.2m in height (the upper surface recorded at 85.77m. AOD).

The cut for gully [548] was 0.83m. wide and 0.19m. deep with shallow sides and a flat base. This feature is almost certainly the same as [429] in Area 4 (Figure 12). Cut into the base of [548] was a post hole and stake hole. The post hole, [551], was square in plan, 0.2m. wide and 0.1m. deep with vertical sides and a flat base (Figure 18). Fill (552) was a grey silty clay with occasional stone inclusions. The stake hole situated to the west, cut [555], was
Figure 18 Gully [548] with post hole [551] and stake hole [555] facing north.
90mm. in diameter with a pointed base filled with a grey clay (556). These features were sealed by backfill of the gully (550) and (549), a compacted iron-rich sand and grey silty clay.

Colluvial Episode: Area 5 Phase 3

Road surface (557) was partially sealed by an intermittent layer of silty sand (560). This was up to 60mm. thick, representing a period of soil accumulation above the earlier road surface.

Iron Age Road Construction, Second Stage: Area 5 Phase 4

The second stage of road construction (stage 2a) comprised a layer of hard metalling up to 0.17m. thick, raising the height of the camber of the original road. The road surface was 6.38m. wide, and the road camber would have stood to a height of 0.37m. above the surrounding landscape. This stage probably corresponds to (420) in Area 4 (Figure 12).

This single deposit was given four context numbers across Area 5: at the eastern edge of Area 5 it was recorded as (517), a very uneven surface of hard, compacted metalling. At this point the stone comprised relatively well sorted rounded pebbles up to 50mm. diameter (Figure 19). To the east the layer had been completely truncated down to the surface of the natural clay. Contexts (522) and (523) were assigned to metalling along the northern and southern fringes of road surface (517). These road fringes had spread from the camber of the road and sealed the earlier surface. Finally, context (527) described the road surface at the western end of Area 5 (Figure 20). Here the surface comprised firmly compacted stone with a tight camber, tipping more towards the north and tailing off to the south. It was noted that the southern half of this road surface was smoother than the northern half, in which larger cobbles had been used.

Colluvial Episode: Area 5 Phase 5

Following its construction the stage 2a Iron Age road became partially covered by colluvium. To the north and south relatively deep deposits of in-washed silt banked up against the road camber, in places sealing the upper road surface. Above (517) at the eastern end of the area this was recorded as context (520), up to 0.15m. in thickness. To the north of the road (526) was up to 0.37m. thick, while to the south (521) was up to 0.17m. thick.

A single body sherd from a medieval flagon or jar in a red sandy ware was recovered from (526), indicating that there has been relatively deep disturbance, through bioturbation or ploughing.

At the eastern end of Area 5 a shallow pit was found cut into colluvial deposit (520) overlying road surface (517). The cut [519] was circular in plan with a shallow concave profile, 0.75m. in diameter and 0.1m. deep. Fill (516) was a dark grey/black friable silt containing very high quantities of charcoal. Sample 3 was recovered from this fill, in which the wood species present were recorded as hazel, ash, oak and apple. These species did not necessarily grow locally, perhaps indicating a selective regime of firewood fuel collection. Coupled with the absence of evidence for a domestic function this might suggest industrial activity.

Iron Age Road Resurfacing: Area 5 Phase 6

The third episode of road construction, stage 2b, comprised a very hard, smooth stone surface. Context (514) was composed of rammed river pebbles no larger than 10mm. diameter, with occasional bands of larger stone up to 40mm. diameter, perhaps indicating the repair of ruts (Figures 21a and 21b). The surface contained linear depressions in the line of traffic suggesting heavy use, with ruts between 0.12–0.17m. wide and an apparent axle width of c.1.9m.

![Figure 19](image_url)
Figure 19 Road surface (517/527) facing southwards.
The surface was up to 0.2m. thick, standing at 86.10m. AOD, and 7.14m. wide, extending 11m. into Area 5 from the west. The camber of the surface was shallower than earlier phases of the road, and when seen in section it is clear that the surface would have been almost flush with the ground level on the northern side, sloping more steeply to the south. This phase of resurfacing equates to the second phase surface context (418), observed in Area 4 (Figure 12).

Fence-line and Colluvial Episode: Area 5 Phase 7
The disuse of the stage 2b road is marked by the insertion of a row of 19 stake holes along the northern edge of surface (514). The holes (context [515]) varied in size from 60mm. diameter and 20mm. deep up to 0.11m. diameter and 0.2m. deep (Figure 22). The holes were spaced at regular intervals, the first 14 spaced at equal intervals of 0.35m. running northwest-southeast, the remaining 5 were spaced at 0.65m. intervals. Alongside the ninth stake hole an additional hole was noted 0.3m. to the north at right angles to the row. The fill of all of the stake holes, (518), was a uniform loose orange/brown silty sand.

The stake holes and road surface (514) were sealed by an accumulated deposit of clean red/brown silt and occasional clayey silt (512).

Late Iron Age Road Construction and Field System: Area 5 Phase 8
The final phase of road construction in this area comprised an intermittent and badly damaged layer of compacted stone (508) (Figure 23), with boundary ditches situated to the north and south. The road surface was 30mm. thick and 5.72m. wide, composed of small pebbles up to 10mm. diameter. Two possible rut repairs were observed in the surface ((510) and (509)) comprising linear bands of larger cobbles up to 20mm. diameter which appeared to have been rammed in as a secondary event, but were not part of the original road construction. The surface stood at 86.19m. AOD. This is the same surface seen in Area 4 (413) (Figure 12).

The boundary ditches to the north and south defined a road corridor 16.4m. wide, measured from their outside edges (Figure 8). The southern ditch, [532], was situated 2.5m. to the south of the road and was 1.34m. wide and 0.55m. deep with a ‘U’ shaped profile (Figure 24). The ditch terminated at a rounded end 15m. from the western edge of Area 5. This ditch was a continuation of ditch [414] seen in Area 4 and [315] in Area 3. The fill of the ditch (531) was a grey/brown slightly sandy clay.
Figure 21a Road surface (514) facing north-west.
Figure 21b
Area 5 road surface (514) and post-Roman road surface plans.
Figure 22 Stake holes [512] cut into road surface (514), facing south-east.
The northern boundary ditch was situated 3.25m. to the north of the road, and comprised two parallel features which had been recut in slightly different positions. The re-establishment of this boundary ditch was also seen in Area 4 (Ditch [402]/[405]) (Figure 12).

The southernmost ditch, cut [535], was up to 1.1m. wide, 0.3m. deep with a concave profile and at least 17m. long. The fill, (534)=(538), was a very firm grey clay with mottled orange sand.

The northern of the two ditches, [536], was up to 1.3m. wide, 0.33m. deep and at least 17m. long with a concave profile. The basal fill, (530)=(537), was a firm grey clay with mottled orange sand. This deposit contained adjoining sherds from a Severn Valley Ware wide-mouthed jar or bowl in a local sandy oxidised fabric, dated to the 2nd–3rd centuries. The overlying fill, (539), was a mottled grey silty clay which contained adjoining sherds from a globular jar/beaker in a Severnake-type grey ware likely to have been produced between the mid 1st and mid 2nd centuries AD. The upper fills of both ditches mingled with a uniform grey silty clay 0.13m. deep (540) which masked their relationship. (540) contained very abraded body sherds from a Severn Valley Ware vessel dated to the 2nd–3rd century.

In addition to the roadside boundary ditches, the remnant of a field ditch was identified running parallel to the road, 2.8m. to the north of ditch [536]. The cut, [554] (Figure 8), and fill (553) are likely to be contemporary with a matching field ditch to the south in Area 6, and so can be related to the 3rd stage road in Area 5. The field ditch was 0.38m. wide and 80mm. deep with a slightly concave profile and flat base. The fill was a cohesive orange and grey silty clay.

Late Roman Ploughsoil over Road: Area 5 Phase 9
Road surface (508) had been badly damaged by ploughing. The visible plough scars ran at right angles to the road itself, indicating that it had ceased to be considered a feature that represented an obstacle to ploughing. The scars were recorded as context [512] (Figure 25), with fill (511).

A layer of deposited orange/brown sandy silt (506)=(507) overlay the plough scars and later road surface to a depth of 0.12m., presumably a remnant ploughsoil associated with the underlying scars. This deposit produced a number of artefacts, including the abraded footring from a very large central-Gaulish Samian bowl (2nd century AD), a small fragment of Roman tegula (roof tile) and lead and iron objects. These artefacts are presumed to have been ploughed out from a location in close proximity to this part of the road.
Figure 24 Terminus of ditch [532] facing north-west. Ditch continues for 191m, towards the isolated oak tree visible at the top of the slope.
Figure 25 Plough scars [512] cutting across the line of the road, facing south-west.
Post-Roman Track: Area 5 Phase 10

In the post-Roman period a gravel track was laid above the line of the earlier road. This surface (501) comprised a loose covering of stone chippings from the local conglomerate stone (Figure 26). This deposit is the same as (411) in Area 4, and was 4m. wide × 0.1m. deep, the surface standing at 86.4m. AOD. Two ditches from this late phase were also detected (502 and 503) which ran on the northern side of the trackway and converged to the east of Area 5 (525), cutting across the line of the underlying earlier road.

Detailed Results for the Late Iron Age/Roman Field System

Remnants of a field system were found partially cut into a cleared landscape and burnt soil in Area 6 adjacent to the road (Figure 9). Two earlier ditches were also evident [608] and [612], as well as two pits which have been included within the Bronze Age section above.

The field system comprised a rectilinear arrangement of ditches to the south of the road. Ditch [604] was aligned parallel to the road, 2m. to the south of boundary ditch [532]. This ditch, seen in section in Area 4 and recorded as [401] (Figure 12), was contemporary with ditch [532] and associated with the 3rd stage of road resurfacing in Area 5. The total length exposed was 37m., with a terminus at its eastern end. The ditch was 1m. wide and approximately 0.3m. deep, though the full depth would have been around 1.02m. as seen in Area 4. Fill (603) was a uniform deposit of grey/brown silty clay.

A second ditch was situated perpendicular to the first, forming a ‘T’ junction. Ditch [605] extended southwards from ditch [604], running in a straight line for 11.5m. before turning southwest and running for a further visible distance of 27m., gradually curving further to the west. The cut was up to 0.5m. wide and 0.14m. in depth with a concave base. The full depth of the feature was truncated by removal of the overburden (see below). The fill (606)=(620) comprised a uniform deposit of grey/brown silty clay. There was no clear relationship between ditches [604] and [605], though the base of [605] was shallower than [604], suggesting that the former fed into the latter.

These features were sealed beneath a deep deposit of uniform silt with laminations of iron panning. This deposit, exceeding 0.5m. in depth, corresponds with context (412) in Area 4 (Figure 12), a deep in-washed colluvium sealing the original ground surface. This had masked the underlying cut features and buried land surface.

Figure 26 Post-Roman track surface (501) with Late Iron Age road surface (508) beneath.
In Area 1 five shallow circular spreads of burnt material were identified adjacent to the road (Figure 3) which appear to be either contemporary with its use or relate to activity along its line at a later date. These were recorded as pits [001], [003], [012], [014] and [022], described as shallow with charcoal inclusions. No evidence for domestic waste was encountered in any of them. A typical description is provided by Pit [012] which was circular in plan, 0.5m. in diameter and 0.05m. deep with a shallow concave profile. The fill, [011], comprised firm dark grey silty clay with very frequent charcoal inclusions. Sample 20 was recovered from the fill which yielded a relatively high proportion of charcoal, all identified as oak, with some remaining unidentifiable.

Artefactual Evidence

POTTERY (By Alice Lyons)

Summary
A very small assemblage of extremely abraded ceramic material was recovered from the boundary ditches and overburden sealing the Iron Age and Roman road at Sharpstone Hill (Figure 27) summarized in Table 2. The majority of the assemblage consists of five fragmentary Romano-British pottery vessels comprising 35 sherds, weighing 147g. (0.46 Estimated Vessel Equivalent (EVE)). One piece of pottery was found to be an intrusive post-Roman ware and in addition two pieces of ceramic material were re-classified as daub.

Fabrics and Forms
Two contexts (530 and 540 – fills of the Phase 8 northern boundary ditches associated with the road in Area 5) contained a soft oxidised fabric consistent with being produced in the Severn Valley area (Tyers 1996, 197–198;

<table>
<thead>
<tr>
<th>Context (Small Find)</th>
<th>Era</th>
<th>Fabric</th>
<th>Form</th>
<th>Sherd Count</th>
<th>Sherd Weight (g.)</th>
<th>EVE</th>
<th>Spot Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>210 (SF9)</td>
<td>Romano-British</td>
<td>Sandy red fine ware (unsourced)</td>
<td>Beaker body sherds decorated with barbotine dots</td>
<td>19</td>
<td>20</td>
<td>0.00</td>
<td>2nd century AD</td>
</tr>
<tr>
<td>507</td>
<td>Romano-British</td>
<td>Samian (central Gaulish)</td>
<td>Footing base from a substantial bowl or mortaria</td>
<td>3</td>
<td>38</td>
<td>0.00</td>
<td>2nd century AD</td>
</tr>
<tr>
<td>526</td>
<td>Medieval to post-medieval</td>
<td>Red sandy ware (unsourced)</td>
<td>Jar/flagon body sherd, possibly once covered with a white slip</td>
<td>1</td>
<td>1</td>
<td>0.00</td>
<td>Medieval to post-medieval</td>
</tr>
<tr>
<td>526</td>
<td>Iron Age to Roman</td>
<td>Sandy oxidised fabric</td>
<td>Daub</td>
<td>1</td>
<td>0</td>
<td>0.00</td>
<td>Iron Age to Roman</td>
</tr>
<tr>
<td>530</td>
<td>Romano-British</td>
<td>Severn Valley ware</td>
<td>Wide mouthed jar/bowl with two grooves under the rim (0.26m. diameter).</td>
<td>8</td>
<td>62</td>
<td>0.06</td>
<td>2nd to 3rd century AD</td>
</tr>
<tr>
<td>539</td>
<td>Romano-British</td>
<td>Severnake-type grey ware</td>
<td>Globular jar/beaker with a bead rim (100mm. rim diameter).</td>
<td>3</td>
<td>25</td>
<td>0.40</td>
<td>Mid 1st to mid 2nd (+) century AD</td>
</tr>
<tr>
<td>540</td>
<td>Romano-British</td>
<td>Severn Valley ware</td>
<td>Undiagnostic body sherds</td>
<td>2</td>
<td>2</td>
<td>0.00</td>
<td>2nd to 3rd century AD</td>
</tr>
<tr>
<td>559</td>
<td>Iron Age to Roman</td>
<td>Sandy oxidised fabric</td>
<td>Daub</td>
<td>1</td>
<td>1</td>
<td>0.00</td>
<td>Iron Age to Roman</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>149</td>
<td>0.46</td>
<td></td>
</tr>
</tbody>
</table>
Figure 27: Distribution of ceramic material.
Tomber and Dore 1998, 148), and indeed one wide mouthed jar with two grooves under the rim (similar to Tyers 1996, 199, fig. 253, 20) was identified in this fabric.

Context (539), also Phase 8 fill of the northern boundary ditches in Area 5, contained a sandy grey ware globular beaker (similar to Tyers 1996, 196, fig. 249, 2 and 3) of the Severnake-type (Tyers 1996, 195–6).

Context 210 (Phase 1 fill of northern boundary ditch, Area 2) contained the fragmentary remains of an unsourced fine sandy red ware beaker (SF9) with barbotine dot decoration. This vessel is finely made, may possibly be a Gaulish import, and would have been a high status vessel when produced in the 2nd century AD.

Also found in Context (507) (Phase 9 ploughed deposit overlying the Roman road in Area 5) was the footring from a large 2nd century Central Gaulish samian ware bowl (Tyers 1996, 113; Tomber and Dore 1998, 30) or possibly a mortaria. This deposit also contained a single abraded fragment of Roman roof tile.

Discussion
Where the pottery could be assigned to a source it can be seen that a mixture of regional centres and Gaulish production centres was the origin of the majority of the material. All the identifiable fabrics are known to have been commonly distributed into this area during the 2nd and 3rd centuries AD (Tyers 1996). Only one fine beaker could not be assigned to source, but this may also have been a Gaulish import. Indeed, the identification of quite fine beaker types and a Samian ware vessel implies (combined with the absence of utilitarian wares such as cooking pots) that this assemblage might have originally been of quite high status.

The presence of this discrete collection of potentially high status vessels in a roadside ditch outside the known Roman settlement would be the typical location for a Romano-British (2nd century) cremation cemetery (Philpott 1991). The fragmentary state of the assemblage and distance from the settlement at Meole Brace, however, make this interpretation unlikely. In addition, because the ceramic material has been repeatedly disturbed, it is doubtful that these vessels were in their primary site (or state) of deposition, and as a result any interpretation must remain speculative. The poor condition of the ceramic material precludes any further analysis.

COINS (By David Shotter)
Nine coins were recovered by metal-detectorists during the excavation (Figure 28). They are summarized in Table 3. Most of the coins were in a relatively poor condition, and some showed signs of considerable wear.

Whilst the sample is too small for extensive comment, it is worth noting that the types and condition of the coins represented would appear to be consistent with loss between the mid-second and the early fourth centuries AD. Further, the size and date-range of the sample is greater than would normally be expected in the context of

<table>
<thead>
<tr>
<th>SF. 1</th>
<th>(U/S) Sestertius, Marcus Aurelius (corroded and damaged; moderately worn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF. 2</td>
<td>(U/S) (fragmentary) Possible Radiate Copy</td>
</tr>
<tr>
<td>SF. 8</td>
<td>(210) Sestertius, Faustina I (moderately worn)</td>
</tr>
<tr>
<td>Obv. DIVA FAUSTINA Rev. AETERNITAS S C (RIC 3 (Antoninus), 1107)</td>
<td>141+</td>
</tr>
<tr>
<td>SF. 10</td>
<td>(U/S) As, probably Flavian (corroded and very damaged)</td>
</tr>
<tr>
<td>SF. 11</td>
<td>(49920: 09398) Sestertius, Vespasian (very worn)</td>
</tr>
<tr>
<td>SF. 13</td>
<td>(Area 1) Nummus, Constantine I (little worn)</td>
</tr>
<tr>
<td>SF. 14</td>
<td>Radiate Copy, Tetricus I (moderately worn)</td>
</tr>
<tr>
<td>Obv. [IMP TETRICVS P F AVG] Rev. [IOVI STATORI] (RIC 5 (Tetricus I), 85)</td>
<td>271–3</td>
</tr>
<tr>
<td>U/S</td>
<td>Half-penny, George III</td>
</tr>
<tr>
<td>U/S</td>
<td>Two Æ objects: one is a fragment of what appears to be an as of first/second-century date; the other appears most likely to be a stud or a button.</td>
</tr>
</tbody>
</table>

Table 3 Coins found by metal-detecting the cleared areas.
a roadside location. This and the nearby presence of a Romano-British settlement lend weight to the possibility that the origin of such numismatic material may have lain in the context of the ritual associated with a roadside cemetery, when the deceased might be provided with one or more coins to pay the fare required for the journey across the River Styx into Hades (Juvenal, Satire 3, 264–7; Iles and Shotter 2009, 92); it is to be expected that the growing strength of Christianity from the early fourth century would have tended to render such a custom increasingly less attractive – a point supported in this case by the fact that no coin found in the excavation post-dates the 330s. It should be noted that a similar suggestion is made in the report on the ceramic material from the site.

METALWORK

Copper-alloy

A single stratified copper alloy object (SF15) was recovered from above the road in Area 4 (412), the head and shaft of a hair pin dated between the 1st and 3rd centuries AD. The pin has a bi-conical head with a diameter of 11mm., while the shank is 2mm. in diameter and broken 8mm. below the head/shank junction.

This has been identified as a knob-headed pin belonging to Cool Group I, Sub Group D or E (Cool 1990, 151). These are widely scattered across southern Britain (defined as south of Chester/Lincoln) throughout the Roman period, with Sub-Group D commonly present in 2nd and 3rd century contexts. Sub Group E comprises knob-headed pins of any shape, but with an expanded shank. (In this case there is not enough of the shank to determine if this is the case.) Sub Group E may be more likely to be 1st/2nd century in date.

A further 18 objects weighing a total of 97g. were found across the stripped quarry extension surface through metal detecting. These included a second possible pin head, buttons, a thimble and buckle/strap fittings. The condition of the assemblage was very poor, having been worked through the ploughsoil, and with the exception of the second pin head does not date any earlier than the post medieval period.

The second pin head (SF 3) comprised a ?bi-conical knob-headed pin of similar type to that seen in Area 4 (Cool Group I, sub group D or E), 9mm. in diameter. The shaft had been broken off immediately below the head. The condition of this object was poor with extensive corrosion.

Iron

The excavation produced 33 pieces of ironwork weighing 3.19kg. The majority of this material was unstratified, though eight objects were recovered from context (507) in Area 5 (ploughed deposit overlying the Roman road) (Figure 16). The condition of the assemblage was poor, with heavy corrosion on all objects. The unstratified objects included nails, a ploughshare, horseshoe and further iron fragments. This assemblage is of no interpretive value to the site and does not warrant detailed analysis.

Lead

Eight lead objects weighing a total of 173g. were recovered during the course of the excavation. A single object (a piece of sheet lead) was found in layer (507) overlying the Roman road in Area 5.

Micromorphological Analysis of Road Construction Sediments (By Richard Macphail)

Introduction

A soil micromorphology study was carried out on pre-Roman soils and sediments, employing three thin sections and quantitative SEM/EDAX analyses. These found that the lowermost context studied (430) (Figure 12) was formed through woodland clearance by fire and associated soil turbation. Iron Age trackway sediments accumulated under muddy trampled conditions. These sediments contain dung residues, including unusually preserved calcitic faecal spherulites, the presence of which allows the inference that much of the traffic was by stock, especially sheep and/or goats. Secondary phosphate from this traffic and traffic along the overlying Iron Age road surfaces produced secondary phosphate features.

Monolith 35 sampled the lowermost organic-rich natural clay (context 430), monolith 34 sampled the buried soil (context 428), and monolith 33 had been taken across the top of context 428, through the brushwood mat (context 410) and into a second buried soil (context 425). These samples are referred to in the text as M33, M34 and M35.

Methodology followed accepted practice (Bullock *et al.* 1985; Courty 2001; Courty *et al.* 1989; Goldberg and Macphail 2006; Macphail and Cruise 2001; Murphy 1986; Stoops 2003).
Context 430 (M35):
This is a very heterogeneous soil, rich in both very coarse and fine charcoal, composed of weakly rubefied ('reddened', or burned) humic loam, and loam containing large amounts of charcoal. A charred woody root may also be present. Very few clasts of very poorly humic, coarse silty-fine sandy soil are present. Occasional sand-size and stone-size burned fine sandstone (10mm.) occur. (The sandstone is likely to be a weathered product of the underlying boulder clay. Glacially transported erratics were seen in the natural clay elsewhere on site.) Very broad matrix soil infills are very abundant, alongside abundant dusty clay void coatings. Very abundant broad probable earthworm burrows and occasional broad excrements occur.

Context 430 is a very mixed soil that includes rubefied topsoil and charcoal-mixed soil. These occur with very abundant charcoal and occasional examples of burned sand and an example of burned stone -- all indicating that this soil is relict of clearance by fire. Soil mixing, textural pedofeatures and the inclusion of coarse silt-fine sand subsoil suggest probable turbation of this recently (?) cleared soil under wet conditions. The soil at this time was not permanently wet because the soil has also been burrowed by probable earthworms.

Context 428 (M34):
This is a homogeneous, compact humic loam, containing very abundant fine fragments of amorphous organic matter and plant tissues, alongside very fine charcoal. Occasional fine charcoal and rare burned sand occur; one very fine bone fragment is present. Many patchy concentrations of partially iron-stained calcitic faecal spherulites occur. Rare green amorphous iron-phosphate/microcrystalline vivianite are present in voids. Often rare void space is infilled with matrix soil containing very fine organic matter. Weak patchy iron impregnation characterises the soil as a whole.

Context 428 is a massive and compact soil that has probably been churned and homogenised, most likely under permanently wet conditions, with any void space being infilled with matrix soil. The high quantities of amorphous organic matter (dung?), marked presence of faecal spherulites and occurrence of secondary phosphate concentrations, all indicate traffic by stock (see discussion).

Context 428 (M33):
This layer appears to have the same formation processes as in M34, (i.e., churning of soil and included dung by traffic). Stronger weathering, however, in this upper part of context 428 may have removed the easily weatherable calcitic faecal spherulites.

Context 410 (M33):
This is a layer which is dominated by very thin (2mm.) twig wood. The soil, which is characterised by textural intercalations where fine silt and clay have become oriented, is massive/microlayered and contains horizontally oriented humified plant fragments. Decaying wood and lignified bark is associated with the presence of very thin organic excrements.

Context 410 is composed of a layer of very thin twig-wood that shows decay in places and is worked by very small mesofauna (~Oribatid mites). The wash downwards from road-way sediments and muddy trampling has probably led to microlayered sedimentation of dung-rich soil into voids between brushwood pieces.

Context 425 (M33):
This is a weakly prismatic and massive homogeneous soil with abundant thin burrows and occasional thin excrements of mesofauna. It is weakly humic with very abundant amorphous organic matter and very fine plant fragments, which occur along with rare phytoliths. Occasional greenish to greenish brown amorphous infills, sometimes enclosing vivianite, occur. Quantitative SEM/EDAX shows these to be composed of iron-phosphate.

This soil-sediment is again formed by traffic churning the muddy road fill, finely fragmenting probable dung. Phosphate from this dung and from dung (and other organic waste) in overlying road metalling layers has become redeposited as greenish nodules which are partially characterised by vivianite. It is possible that drier conditions at this elevation have allowed working of the dung-rich soil by small mesofauna at times. Perhaps this marks a season or short period of disuse before sealing by road metalling/Iron Age road construction.

Discussion

Local soils
The best fit soil type for context 430 is the local stagnogleyic argillic brown earth, which is formed on glaciofluvial drift (Salwick soil association)(Ragg et al. 1983). This drift is likely to be formed of coarse silt and fine-medium
sand-size quartz, as found at this location. Other local soils are formed on pre-Cambrian rocks and reddish till, which may account for the presence of ferruginous fine sandstone and examples of igneous rock clasts.

Clearance
Context 430 is a typical soil formed through clearance by fire, with burned soil, burned sand and stones (rubefied), and general disruption forming fine-charcoal rich soils and dusty textural pedofeatures (Goldberg and Macphail 2006, 199–202; Macphail and Goldberg 1990; Macphail and Linderholm 2004). Although many previous studies have examined colluvium from cleared soils (Macphail 1990) this is an in situ example. The removal of trees would have allowed the soil’s water table to rise and hence make it boggier. Clearance of late prehistoric woodland is not unusual (Scaife 1992), while a greenfield woodland site was cleared by fire within Roman Leicester (Macphail and Crowther 2007).

Pre-Roman Road Trackway
It is clear that some 0.40 m. of trackway deposits accumulated at Sharpstone Hill (contexts 425–428). These are typically massive, and compact because of muddy slaking caused by trampling of wet soil. Trackway and hollow-way soil accumulations have been studied elsewhere, for example from Iron Age Scania, Sweden (Macphail 2003), medieval Brittany, France (Gebhardt 1990), and elsewhere in the UK (Macphail and Crowther 2008; Macphail and Cruise 1997–2003). It is possible to infer the kind of traffic and local cultural environment from road fill sediments; for example urban roads in Saxon Canterbury and medieval London can be rich in domestic and industrial waste. No domestic or industrial microartefacts are present at Sharpstone Hill. Rather the sediments are characterised by humified plant fragments and amorphous organic matter that is best interpreted as finely fragmented dung residues. (Obviously solely human trampling in muddy conditions also produces textural pedofeatures (Rentzel and Narten 2000)). Soils may also become burrowed by mesofauna that work the dung, as found in upper 428. Moreover, at Sharpstone Hill, there are patches of unusual preservation of calcitic spherulites in context 428. Calcitic dung/faecal spherulites, which are very easily lost through decalcification (Brochier et al. 1992), are biogenic calcite formed in the gut of grazing animals such as sheep, goats and cattle (Brochier 1983, 1996; Courty et al. 1989; Canti 1997, 1999; Shahack-Gross et al. 2005, 2008). At Sharpstone Hill the presence of calcium, potassium, and magnesium in the soil has presumably buffered the soil sufficiently to allow the preservation of these spherulites, albeit in a semi-ferruginised form. The amount of spherulites may suggest that animal traffic in this presumably rural environment was dominated by sheep and goats, which produce more of this type of biogenic calcite compared, for example, with cattle. As another example of finding this biogenic calcite in road deposits, rare instances of faecal spherulites were encountered in late-Roman road silts in Canterbury. It is also worth noting that animal waste contributes to phosphate concentrations in road deposits, and this occurs as amorphous iron-phosphate and crystalline vivianite at Sharpstone Hill. In fact, phosphate can be quite mobile under wet conditions (Thirly et al. 2006). One Romano-British trackway near Baldock, Hertfordshire, has a similar soil accumulation to that at Sharpstone Hill, but this example occurs at the base of a colluvial slope on chalkland, whereas another is characterised by vivianite resulting from phosphate accumulation (Macphail and Crowther 2009).

Conclusions
Soil micromorphology found that the lowermost context studied (430) was formed through woodland clearance by fire and associated soil turbation. Iron Age trackway sediments accumulated under muddy trampled conditions. These sediments contain dung residues, including unusually preserved calcitic faecal spherulites, the presence of which allows the inference that much of the traffic was by stock, especially sheep and/or goats. Secondary phosphate from this traffic and traffic along the overlying road produced secondary phosphate features.

Palaeoenvironmental Evidence (By Ben Gearey, Roz McKenna, Pam Grinter, and David Smith)

Methodology
Birmingham Archaeo-Environmental undertook an analysis of the waterlogged remains discovered in Area 4, and also the fills of pits which had been sampled because of the charred remains they contained. The waterlogged plant, beetle and pollen assessments focussed on samples from a section excavated through the road (Area 4 (Figure 12)). This included context 428, a grey, slightly organic silt deposit sealed by a layer of brushwood (410). A single bulk
sample (sample 19, 10 litres) was processed. In addition, a continuous monolith sequence (samples 16 and 17) through the clay road core beneath the brushwood layer was collected. Four sub-samples from this monolith (0, 0.08, 0.16 and 0.20m.) were taken for pollen assessments.

The bulk sample was processed at the University of Birmingham Archaeology Department using the standard method of paraffin flotation outlined in Kenward et al. (1980). The insect remains were sorted from the paraffin flot and the sclerites identified under a low power binocular microscope at ×10 magnification. The system for ‘scanning’ faunas as outlined by Kenward et al. (1985) was followed. Pollen preparation followed standard techniques including potassium hydroxide (KOH) digestion, hydrofluoric acid (HF) treatment and acetylation (Moore et al. 1991). At least 125 total land pollen grains (TLP), excluding aquatics and spores, were counted for each sample. Fifteen sub-samples (10 litres) of raw sediment were processed for charred macrofossils (Table 4). Identification was made using a reference collection and the wood identification guides of Schweingruber (1978) and Hather (2000). Taxa were identified only to genus due to a lack of defining characteristics in charcoal material.

Plant Macrofossils (Waterlogged)

The flot recovered from the ‘trackway’ deposit (context 428) was rich in identifiable waterlogged plant remains. Those seeds are from a range of species likely to be growing in the area around the sampling site. The species present included stinging nettle, buttercups, sedges, bramble, docks, goosefoots, (*Urtica dioica*, *Ranunculus* spp., *Carex* spp., *Rubus fruticosus*, *Rumex* spp., *Chenopodium* spp.). These species suggest damp grassland, with taxa such as brambles, goosefoots, docks and nettles suggesting somewhat disturbed soils. There is no indication of woodland in this sample.

Beetles

The insect fauna recovered from context 428 was very small, eroded and fragmented, suggesting poor preservation. Only two taxa were recovered in significant numbers. These included species of the *Aphodius* (‘dung beetles’). This probably indicates that herbivores, possibly cattle, were grazing in the area since they are commonly associated with animal dung lying in pasture. The other species recorded was *Notaris acridulus*, a weevil, which is normally associated with reed-sweet grass (*Glyceria maxima* (Hartm.) Holmb., a tall reed-like herb that grows in or at the margins of wetlands).

The presence of dung beetles would seem to confirm the results of the plant assessment. The area around the sampling site was open grassland that was probably created and/or maintained by grazing. It would seem probable that this reflects the pastoral farming activities of local human communities, although the dung beetle may derive in whole or in part from wild animal populations.

Table 4 Components of the sub-samples from Bayston Hill Quarry.

<table>
<thead>
<tr>
<th>Feature</th>
<th>pit</th>
<th>road</th>
<th>pit</th>
<th>ditch</th>
<th>clay</th>
<th>pit</th>
<th>pit</th>
<th>Bd</th>
<th>Bd</th>
<th>Bd</th>
<th>pit</th>
<th>Bd</th>
<th>Bd</th>
<th>pit</th>
<th>Bd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample No.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>15</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>Context No.</td>
<td>002</td>
<td>512</td>
<td>516</td>
<td>400</td>
<td>430</td>
<td>11</td>
<td>21</td>
<td>19</td>
<td>614</td>
<td>619</td>
<td>624</td>
<td>27</td>
<td>24</td>
<td>29</td>
<td>625</td>
</tr>
<tr>
<td>Sample volume</td>
<td>10</td>
</tr>
<tr>
<td>Charcoal fgts.</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Earthworm egg capsules</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Herbaceous detritus</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>Insect fgts.</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Plant macros.</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Root/rootlet fgts.</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sand</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Stones</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>–</td>
</tr>
</tbody>
</table>

Semi-quantitative score of the components of the samples is based on a four point scale, from ‘1’ – one or a few remains (less than an estimated six per kg. of raw sediment) to ‘4’ – abundant remains (many per kg. or a major component of the matrix). Earthworm capsules and roots/rootlets are likely to be modern contaminants. BD = burnt deposit.
Pollen
No palynomorphs were present in samples 16 or 17 (see Figure 12). It is likely that this reflects the preservation of low concentrations of microfossils in the largely inorganic silt deposit.

Plant Macrofossils (charred)
Table 4 shows the components recorded from each of the fifteen sub-samples. No charred seeds were identified in any of the samples. Root/rootlet fragments were ubiquitous, which might indicate disturbance of the archaeological features by bioturbation. Such disturbance is further confirmed by the presence of probable modern insect remains in nine of the samples, and earthworm egg capsules in five of the samples. Seeds similar in appearance to waterlogged plant macrofossils were present in small numbers in three of the samples. The preservation of these was excellent and those recorded (Chenopodium spp./Atriplex spp. and Carex spp.) are species often found in varying abundance in archaeological samples as modern contaminants.

Charcoal was recorded in all the samples, although the preservation of the fragments was variable both within and between the samples. Some of the charcoal was firm and crisp, permitting clean surfaces where identifiable characteristics were visible. However, many of the fragments were very brittle, and the material tended to crumble or break in uneven patterns, making the identifying characteristics harder to distinguish. The results of the assessment of identifiable charcoal on nine of the samples are given in Table 5.

The range of taxa identified includes Quercus (oak), Alnus (alder), Corylus (hazel), Fraxinus (ash), hawthorn/apple/Sorbus-group (Pomoideae), Salix/Populus (willow/poplar) and Betula (birch). These taxa belong to the groups of species represented in the native British flora. The wood was therefore derived from a range of slightly different habitats, including woodland (Quercus), wetland or damper soils (Alnus, Salix), and scrub/woodland edge (Fraxinus, Corylus and species of the Pomoideae). However, Quercus is the most abundant of the identified charcoal fragments, with Fraxinus and Corylus also relatively well represented. It can be noted that Quercus, Fraxinus and Corylus are regarded as producing excellent firewood (Stuïjt 2005). Alnus was also well represented.

Table 5 Complete list of taxa recovered from deposits at Sharpstone Hill

<table>
<thead>
<tr>
<th>Name</th>
<th>Vernacular</th>
<th>Sample 1 (02) 300+ fgts. 30mm Pit fill</th>
<th>Sample 3 (516) 500+ fgts. 4mm Charcoal spread/road covering</th>
<th>Sample 20 (11) 300+ fgts. 80mm Pit fill</th>
<th>Sample 22 (19) 300+ fgts. 4mm Charcoal spread</th>
<th>Sample 26 (614) 200+ fgts. 2mm Burnt spread</th>
<th>Sample 28 (624) 200+ fgts. 17mm Burnt spread</th>
<th>Sample 30 (24) 10 fgts. 6mm Pit fill</th>
<th>Sample 31 (29) 10 fgts. 8mm Pit fill</th>
<th>Sample 32 (625) 100+ fgts. 26mm Burnt spread</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alnus glutinosa</td>
<td>Alder</td>
<td>–</td>
<td>–</td>
<td>13</td>
<td>32</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Alnus / Corylus</td>
<td>Alder / Hazel</td>
<td>7</td>
<td>–</td>
<td>18</td>
<td>10</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Betula spp.</td>
<td>Birch</td>
<td>–</td>
<td>–</td>
<td>6</td>
<td>10</td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Corylus avellana</td>
<td>Hazel</td>
<td>9</td>
<td>4</td>
<td>25</td>
<td>–</td>
<td>19</td>
<td>1</td>
<td>–</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Fraxinus excelsior</td>
<td>Ash</td>
<td>9</td>
<td>6</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>Quercus</td>
<td>Oak</td>
<td>68</td>
<td>64</td>
<td>62</td>
<td>7</td>
<td>43</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>Pomoideae</td>
<td>Hawthorn/apple/Sorbus-group</td>
<td>11</td>
<td>14</td>
<td>–</td>
<td>14</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>?Salix / Poplar</td>
<td>?Willow/Poplar</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>35</td>
</tr>
<tr>
<td>?Indeterminate</td>
<td>16</td>
<td>15</td>
<td>38</td>
<td>35</td>
<td>4</td>
<td>11</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Taxonomy and nomenclature follow Schweingruber (1978). Numbers are identified charcoal fragments per sample.
in Sample 26 (614 – pit feature). This wood is a relatively poor firewood, but it makes excellent charcoal, raising the possibility that production of charcoal was being carried out at the site.

There are a number of variables that affect the representation of species in samples of archaeological charcoal, which range from environmental and/or social factors in the selection of different materials in antiquity, as well as the various factors of taphonomy and preservation (Thery-Parisot 2002). The relative proportions of taxa should not be considered proportionately representative of the abundance of wood resources in the local environment, and are more likely to reflect particular choices of fuel. The presence of bark on some of the charcoal indicates that the material is more likely to have been burnt in an unworked state, rather than derived from waste structural timber for example.

Discussion and Conclusions

Poor preservation of relatively low concentrations of waterlogged plants and beetles in the sample from context 428 prevents detailed discussion, but the presence of dung beetles would seem to confirm the results of the plant assessment. The area around the sampling site was apparently open grassland that was probably created and/or maintained by grazing. It would seem probable that this reflects the pastoral farming activities of local human communities, although the dung beetle may derive in whole or part from wild animal populations. The indications of dung are paralleled by the results of soil micromorphological analyses of the underlying context 430, which produced evidence of faecal spherulites and dung residue (see above). The combined datasets would thus suggest the movement of animal traffic along the road, as well as possible grazing in the areas adjacent.

The use of Sambucus in the brushwood layer 410 is somewhat unusual, as it is a taxon not often encountered in archaeological contexts. There are two native species of the genus, S. nigra (elder/ elderberry) and S. ebulus (danewort/ dwarf elder), both of which are typical of moist loamy soils, and grow in a range of habitats including wasteground, woodland edge and scrub. Presumably the choice of this wood reflects its local availability, but it can also be observed that much folklore surrounds the elder tree. Whether this has any relevance in terms of the archaeological record must remain a moot point.

The bulk samples produced no plant macrofossil remains of interpretable value, other than charcoal remains from nine of the samples. The difference in preservation between these deposits and the sample from 428 can be explained by the fact that the latter was originally deposited in a wetter context and appears to have remained at least partially waterlogged, hence the preservation of some organic material. The samples from the other contexts represent relatively dry pit-fills, spreads etc. which have clearly been free draining and hence without the potential for preservation of any uncharred material.

The three samples of wood from the pit-fills (samples 22, 30 and 31) have been dated to the Bronze Age. This would suggest that these pits represent an earlier phase of activity, predating the construction of the road. However, the residence of charcoal in archaeological contexts and the possibility of reworking and re-deposition must also be considered. It is possible that the dated samples represent residual material. This may also indicate that other undated features on the site also pre-date the construction of the trackway/road in the Iron Age/Romano-British period.

The charcoal itself reflects the burning of several wood/shrub species native to Britain, including Quercus, Fraxinus, Alnus and Corylus. The absence of other plant remains, such as seeds, may reflect selective preservation in the samples. However, the presence of charcoal fragments, including those less than 1mm. in size, can be regarded as a good indication that the lack of other plant remains is a broadly accurate reflection of the original contents of the sampled features. It seems likely that no plant remains other than charcoal were deposited in these features in antiquity.

Scientific Dating

Radiocarbon Dating

Three samples of worked roundwood from the brushwood mat (410) were submitted for radiocarbon dating; all were all identified as Sambucus spp. (elder). In addition, three samples of wood charcoal (Samples 22, 30 and 31 from pits in Area 1 – see Table 9) were submitted for radiocarbon dating. The samples were all sent to Beta Analytic Inc., Miami, Florida, for dating using the AMS method. The three waterlogged wood samples submitted to Beta Analytic Inc for radiocarbon dating were processed using methods outlined at http://www.radiocarbon.com/ and measured by Accelerator Mass Spectrometry.

The charred wood from the Bronze Age pits resulted in the following determinations: Sample 22 (Pit 20) 3340 ± 40 BP (BC 1740 – 1520); Sample 30 (Pit 23, upper fill 24) 3300 ± 40 BP (BC 1680 – 1500); and Sample 31 (Pit 23, lower fill 29) 3050 ± 40 BP (BC 1390 – 1120).
The samples from the brushwood mat date to the late Iron Age/early Romano-British period (Table 7). These three radiocarbon measurements (Beta-265656-8) from the brushwood mat (410) only just fail a chi-squared test ($T'=6.1; n=2; T'(5%)=6.0$; Ward and Wilson 1978), meaning that they are likely to be very close in age. Given that the brushwood mat is likely to have been laid over a short period of time such a set of results is not unexpected.

Optically Stimulated Luminescence Dating

In addition to the radiocarbon dating for the brushwood foundation of the road, undertaken as part of the palaeoenvironmental study, a sampling strategy was designed to obtain samples for OSL dating through the sedimentary deposits which overlay the brushwood, so that a full stratigraphic sequence of the road deposits could be dated. Eight samples were collected and *in-situ* radioactivity measurements were made using a portable gamma-ray spectrometer (Rhodes and Schwenninger 2007). In the case of samples 4 and 5 no gamma-spectrometer readings were made. Instead, a mean external gamma dose value derived from the other six measurements was used and an inflated error was attached to these estimates. Sample preparation and optically stimulated luminescence (OSL) measurements were performed at the luminescence dating laboratory at the Research Laboratory for Archaeology and the History of Art, University of Oxford.

The results set out in Table 6 below are based on luminescence measurements of sand-sized quartz (180–255nm) using the weighted mean of repeat measurements performed on twelve separate aliquots. All samples were measured using a SAR post-IR blue OSL protocol (Murray and Wintle 2000, Banerjee *et al.* 2001). Dose rate calculations are based on the concentration of radioactive elements (potassium, thorium and uranium), derived from elemental analysis by ICP-MS using a fusion sample preparation technique. The external gamma-dose rate was derived from *in-situ* measurements made with a portable gamma-ray spectrometer. The final OSL age estimates include an additional 2% systematic error to account for uncertainties in source calibration. Dose rate calculations are based on Aitken (1985). These incorporated beta attenuation factors (Mejdahl 1979), dose rate conversion factors (Adamiec and Aitken 1998) and an absorption coefficient for the water content (Zimmerman 1971). The contribution of cosmic radiation to the total dose rate was calculated as a function of latitude, altitude, burial depth and average over-burden density based on data by Prescott and Hutton (1994).

The quartz OSL signal characteristics were good, featuring high signal intensity, negligible recuperation and good recycling ratios. Some aliquots showed a high infra-red stimulated signal (IRSL), which indicates the presence of contaminant feldspar mineral grains surviving the prolonged treatment with concentrated hydrofluoric acid. However, the adoption of a post-IR blue OSL measurement protocol (Banerjee *et al.* 2001) in which each OSL measurement is preceded by an IR measurement, in order to deplete the contribution of feldspathic minerals to the OSL signal, enabled the IR/OSL ratio to be reduced to negligible levels.

The luminescence measurements provide a consistent set of palaeodose values with the lower three samples having slightly higher amounts of trapped charge than the others. These samples are also characterized by slightly higher concentrations of radio-isotopes and higher field water contents which in turn, are responsible for a higher environmental dose rate at those sampling locations. The net result is that the OSL age estimates for all the samples turn out to be very similar with overlapping errors. This suggests that the entire sedimentary sequence is likely to have developed rapidly within a relatively short period of time. A more refined chronology (see Bayesian modelling below) which takes account of the stratigraphic position of each sample and which can integrate OSL and radiocarbon dates is presented following this section on OSL dating.

Sample OSL 6 clearly appears to be out of step with the other samples in the series and should perhaps be treated as an outlier. The error is still within the range of the other samples and one has to be cautious not to...
over-interpret the findings. It is difficult to say if this sample has been affected by a dosimetry problem or not. Another explanation could be that the sediment from this stratigraphic unit was removed from an older pre-existing sedimentary unit and dumped (without being reset) as a result of anthropogenic activity associated with the road building.

Bayesian Modelling (By Peter Marshall)

A total of three radiocarbon and eight optically stimulated luminescence (OSL) measurements have been obtained on samples from Area 4, a transect across an Iron Age and Roman road, at Sharpstone Hill.

The radiocarbon results are conventional radiocarbon ages (Stuiver and Polach 1977), and are quoted in accordance with the international standard known as the Trondheim Convention (Stuiver and Kra 1986).

The calibrations of these results, which relate the radiocarbon measurements directly to the calendrical time scale, are given in Table 7 and in outline in Figure 29. All have been calculated using the datasets published by Reimer et al. (2009) and the computer program OxCal v4.1 (Bronk Ramsey 1995, 1998, 2001, 2009). The calibrated date ranges cited are quoted in the form recommended by Mook (1986), with the end points rounded.

![Figure 29](image)

Figure 29 Probability distributions of dates from Sharpstone Hill.

NB: each distribution represents the relative probability that an event occurs at a particular time. For each of the radiocarbon/OSL dates two distributions have been plotted, one in outline, which is the result of simple calibration, and a solid one, which is based on the chronological model used. The other distributions correspond to aspects of the model. For example, the distribution *Phase 1 Iron Age Road* is the estimated date for the construction of phase 1 of the Iron Age road. A question mark (?) indicates that the result has been excluded from the model. The large square brackets down the left hand side, along with the OxCal keywords, define the model exactly.
outward to 10 years for errors greater than 25 years. The ranges in Table 7 have been calculated according to the maximum intercept method (Stuiver and Reimer 1986); the probabilities shown in Figure 29 are derived from the probability method (Stuiver and Reimer 1993). A Bayesian approach has been adopted for the interpretation of the chronology from Area 4 (Buck et al. 1996). Although the simple calibrated radiocarbon dates and OSL measurements are accurate estimates of the dates of the samples, this is usually not what archaeologists really wish to know. The dates of the archaeological events which are represented by those samples are of greater interest. In the case of the Area 4 it is the chronology of road construction which is under consideration, not the dates of the samples themselves. The dates of this activity can be estimated not only by using the scientific dating information from the radiocarbon and OSL measurements on the samples, but also by using archaeological information about the relationships between samples.

Fortunately, methodology is now available which allows the combination of these different types of information explicitly, to produce realistic estimates of the dates of interest. It should be emphasised that the posterior density estimates produced by this modelling are not absolute. They are interpretative estimates, which can and will change as further data become available and as other researchers choose to model the existing data from different perspectives.

The technique used is a form of Markov Chain Monte Carlo sampling, and has been applied using the program OxCal v4.1.5 (http://c14.arch.ox.ac.uk/). Details of the algorithms employed by this program are available from the on-line manual or in Bronk Ramsey (1995, 1998, 2001, 2009). The algorithm used in the models described below can be derived from the structures shown in Figure 30.

The model shown in Figure 29 excludes OSL sample X3733, which is clearly too old for its stratigraphic position. Given that this material was a hardcore layer (420) it is most likely that it suffered incomplete bleaching before being deposited. The model (Figure 29) shows good agreement (Aoverall=94.4%) between the scientific dating measurements and archaeological evidence and provides estimates for the construction of the different road phases as follows (see Figure 30):

- Iron Age Trackway – 200–5 cal BC (95% probability; Iron Age Trackway; Figure 30) and probably 130–40 cal BC (68% probability).
- Phase 1 Iron Age Road – 125 cal BC–cal AD 35 (95% probability; Phase 1 Iron Age Road; Figure 30) and probably 80–1 cal BC (68% probability).
- Phase 2 Iron Age Road – 110 cal BC–cal AD 70 (95% probability; Phase 1 Iron Age Road; Figure 30) and probably 75 cal BC–cal AD 15 (68% probability).
- Phase 3 Late Iron Age- Roman Road – 105 cal BC–cal AD 105 (95% probability; Roman Road; Figure 30) and probably 65 cal BC–cal AD 40 (68% probability).

The probability that the last stage of the road was constructed before the Roman conquest of Britain is 82%.

Chronological Development and Site Interpretation

Introduction

The original aim of the excavation at Sharpstone Hill was to investigate a length of known Roman road as it crossed the hill en route from Wroxeter to Meole Brace. In fact the excavation has uncovered clear evidence of a road which is older than originally supposed, predominantly Iron Age in date, but which continued in use into the Romano-British period (Figure 31).
The discussion presented here considers the chronological development of the road as it crossed Sharpstone Hill at each of the key stages in its development. A concordance table is set out below (Table 8) to provide a comparison between site wide phases and those derived from analysis of the six individual excavation areas.

Phase 1: Bronze Age

The evidence for Bronze Age activity on the south-eastern slope of Sharpstone Hill comprises a series of six pits within and adjacent to the line of the road between Areas 1 and 6 (Figure 32) summarized in Table 9. These were all similar in nature, greater than 1 m. in diameter and contained considerable quantities of heat-shattered stone and charcoal in securely stratified fills. In two of the pits (020 and 023) the charcoal was identifiable to species level, indicating that alder, birch, hazel, ash, oak and hawthorn/apple wood was being collected and burnt as fuel within a date range of between BC 1740 and BC 1120 (Table 9).
The absence of any charred plant material such as seeds, or animal bone suggests that these pits did not serve a domestic function, and their true purpose remains unknown. Recent archaeological work undertaken at Clifton Quarry in Worcestershire by the Worcestershire Archaeology Service identified a similar concentration of boiling pits dated to BC 1410–1250. These were associated with a burnt mound adjacent to a former channel of the River Severn. It is suggested that the pits had a ritual function, possibly used in cleansing activities associated with sweat lodges (http://worcestershire.whub.org.uk/cms/environment-and-planning/archaeology: accessed 08.04.10), and this idea of ritual bathing adjacent to burnt mounds is identified by Mike Hodder in the West Midlands Regional Research Framework (http://www.iaa.bham.ac.uk/research/projects/wmrrfa/seminar2/Mike_Hodder.doc: accessed 08.04.10).

Although a burnt mound or accompanying settlement was not identified at Sharpstone Hill, if such a use could be suggested for the Bronze Age features then the proximity of these pits to the pond (around 40m. to the east) as a source of water could be significant, as well as the commanding views afforded by the elevation of the hillside towards major landmarks, such as the Wrekin and Caer Caradoc to the east and south.

The one feature of this period which is distinct from the others is pit 023, which was over 2m. in diameter and 1.2m. deep with a ‘post-pipe’ type construction. As with the other pits this did not appear to have a domestic

Table 8 Site phases.

<table>
<thead>
<tr>
<th>Period</th>
<th>Site Phase</th>
<th>Site sub Phase</th>
<th>Description</th>
<th>Area 1 Phase</th>
<th>Area 2 Phase</th>
<th>Area 3 Phase</th>
<th>Area 4 Phase</th>
<th>Area 5 Phase</th>
<th>Area 6 Phase</th>
<th>Bayesian Model Phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bronze Age</td>
<td>1</td>
<td>2</td>
<td>Pitting</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Iron Age Trackway</td>
</tr>
<tr>
<td>Iron Age</td>
<td>2</td>
<td>2.1</td>
<td>Land clearance by fire</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Iron Age Road</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td></td>
<td>Droveway/ Brushwood</td>
<td>2a, 2b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Stage 1)</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td></td>
<td>First road construction and subsequent burial</td>
<td>3, 4</td>
<td>2, 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iron Age Road</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td></td>
<td>Second road construction</td>
<td>5</td>
<td>4, 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Stage 2)</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td></td>
<td>Second road construction and subsequent burial</td>
<td>6</td>
<td>6, 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iron Age Road</td>
</tr>
<tr>
<td>Late Iron Age-Roman</td>
<td>3</td>
<td>3.1</td>
<td>Third road construction, flank & boundary ditches, field system</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>(Stage 3) Iron Age Road</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td></td>
<td>Third road use and repair</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Late Iron Age Road</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td></td>
<td>Recut drainage ditch</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td></td>
<td>Roadside Fire Pits</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td></td>
<td>Disuse of road</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Roman Road (TAQ)</td>
</tr>
<tr>
<td>Post-Roman</td>
<td>4</td>
<td>4.1</td>
<td>Deposition above road and Cross-Ploughing</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td></td>
<td>Trackway</td>
<td>3</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modern</td>
<td>5</td>
<td></td>
<td>Topsoil</td>
<td>4</td>
<td>4</td>
<td>11</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
function, and any timber post that it supported would have been of considerable size. The absence of surrounding post holes might be an indication that the post supported an awning, in a similar vein to those suggested at Little Marlow in Buckinghamshire (Richmond et al. 2006), or that it formed a totem or marker post for a route way. Standing stones known from this period are often identified as route markers, and possibly at Sharpstone Hill the evidence could indicate that a timber equivalent to a standing stone had been erected.

Table 9 Summary of Bronze Age pits.

<table>
<thead>
<tr>
<th>Feature No.</th>
<th>Diameter (m.)</th>
<th>Depth (m.)</th>
<th>Fill</th>
<th>Wood Species</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>004</td>
<td>1.00</td>
<td>0.26</td>
<td>(5) Charcoal, heat shattered stone</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>009</td>
<td>1.00</td>
<td>0.12</td>
<td>(10) Charcoal, heat shattered stone</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>020</td>
<td>1.30</td>
<td>0.27</td>
<td>(19) Charcoal, heat shattered stone</td>
<td>alder, birch, hazel, oak and hawthorn/apple birch, ash and oak</td>
<td>1740–1510 cal BC</td>
</tr>
<tr>
<td>023</td>
<td>2.20</td>
<td>1.20</td>
<td>(24–30) Charcoal, heat shattered stone</td>
<td>–</td>
<td>1420–1210 cal BC and 1690–1490 cal BC</td>
</tr>
<tr>
<td>621</td>
<td>1.50</td>
<td>0.15</td>
<td>(614,619) Charcoal, compacted burnt stone</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>623</td>
<td>1.05</td>
<td>0.21</td>
<td>(624) Charcoal, burnt stone</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Figure 32. Bronze Age features plan.
The nearest known Bronze Age sites to the current site are those at Weeping Cross 1.3km. to the northeast (Figures 1 and 33), the Knowles Bronze Age cemetery 1km. to the northwest, and at Condover 1.5km. to the south-west. Isolated ring ditches, thought to indicate further round barrows, have also been identified at Bayston Hill and Meole Brace. Radiocarbon dates, Birm-206 3205 ± 130 BP (calibrating to 1770–1130 cal BC) and Birm-207 2770 ± 118 BP (calibrating to 1270 – 760 cal BC), indicate that some phases of activity in the complex ringed enclosure and cemetery at Weeping Cross are broadly contemporary with the Sharpstone Hill pits, though Weeping Cross had apparent Neolithic origins and continued to be occupied into the Iron Age and Roman periods. There is also a suggestion of earlier activity on the summit of Sharpstone Hill in the Neolithic, however, with the discovery of a polished stone axe hammer in 1948 in the area now lost to quarrying.

It is conceivable that if the spring on the hillside had ritual significance in the Bronze Age then it could have formed a focus as a landmark, a meeting point for The Portway and the routeway that is the focus of the present investigation, a destination for travellers, and it might have been instrumental in establishing the route of later roads across the hill leading towards the cemetery at Meole Brace and other sites nearby.
Figure 34
Iron Age features plan.
Phase 2: Iron Age

The Iron Age is the best-represented period at the site, with deeply buried land surfaces and road deposits surviving in a concentrated zone between Areas 3 and 5 (Figure 34) summarized in Table 10. The excavated evidence indicates that the land had been cleared by fire prior to the use and maintenance of a drove way, with subsequent improvements and the creation of a metalled road. Traces of linear features to the south of the road may be an indication of roadside activity. A chronology has been established for this period through modelling of radiocarbon and OSL dates.

The buried land surface recorded beneath the line of the later road is a rare example of a cleared soil surviving in situ. Though undated, it is apparent that little time passed between land clearance by fire and subsequent burial beneath the trackway, as the soil was not sufficiently developed for the charcoal to break down and lose its blackened appearance. Spreads of charcoal and charcoal-rich fills in bioturbation features to either side of the roadway are likely to be associated with this phase of land clearance.

With the loss of tree cover it is suggested that the water table would have risen leading to localised waterlogged (boggy) conditions, and the species of vegetation present reflects this, comprising brambles, goosefoot, docks and nettles indicative of damp grassland and disturbed soils. The first identifiable route leading across this landscape was a muddy, unsurfaced track, with mixed organic matter and calcitic faecal spherulites, indicating trampled dung from the movement of livestock.

In response to the wet and muddy conditions along the track, a brushwood mat of elder twigs and branches was laid to stabilise the ground surface, perhaps as part of the foundation for the overlying track. If the wood was sourced locally it would suggest that, away from the margins of the trackway, the local vegetation comprised elder scrub. This type of plant community has an affinity with damp and disturbed soils such as derelict ground,

<table>
<thead>
<tr>
<th>Stage</th>
<th>Area 4</th>
<th>Area 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>413</td>
<td>508</td>
</tr>
<tr>
<td></td>
<td>Road surface (90mm. pebbles)</td>
<td>Road surface (10mm. pebbles)</td>
</tr>
<tr>
<td></td>
<td>2.6m. wide, 0.2m. high or 6.42m. wide incl.</td>
<td>5.72m. wide, 0.3m. high with rut repairs</td>
</tr>
<tr>
<td></td>
<td>Late Iron Age – Roman</td>
<td></td>
</tr>
<tr>
<td></td>
<td>417, 421</td>
<td>512</td>
</tr>
<tr>
<td></td>
<td>colluvial deposit</td>
<td>colluvial deposit</td>
</tr>
<tr>
<td>2b</td>
<td>418</td>
<td>514</td>
</tr>
<tr>
<td></td>
<td>Road surface (90mm. pebbles)</td>
<td>Road surface (10mm. pebbles; repairs 40mm. pebbles)</td>
</tr>
<tr>
<td></td>
<td>6.42m. wide, 0.27m. high Iron Age</td>
<td>7.14m. wide, 0.2m. high</td>
</tr>
<tr>
<td></td>
<td>517, 523, 527</td>
<td>521, 526</td>
</tr>
<tr>
<td></td>
<td>colluvial deposits</td>
<td>colluvial deposit</td>
</tr>
<tr>
<td>2a</td>
<td>420</td>
<td>517</td>
</tr>
<tr>
<td></td>
<td>Hardcore for road (sand & gravel 0.1m. high)</td>
<td>Road surface?/hardcore (50mm. pebbles)</td>
</tr>
<tr>
<td></td>
<td>419/422</td>
<td>6.38m. wide, 0.17m. high</td>
</tr>
<tr>
<td></td>
<td>colluvial deposits</td>
<td>560</td>
</tr>
<tr>
<td></td>
<td></td>
<td>colluvial deposit</td>
</tr>
<tr>
<td>1</td>
<td>423</td>
<td>517</td>
</tr>
<tr>
<td></td>
<td>Road surface (80mm. pebbles) Iron Age</td>
<td>Road surface (30–100mm. pebbles)</td>
</tr>
<tr>
<td></td>
<td>5.3m. wide, 0.17m. high</td>
<td>6.38m. wide, 0.2m. high</td>
</tr>
<tr>
<td></td>
<td>424 Hardcore for road</td>
<td>541, 542, 558, 559</td>
</tr>
<tr>
<td></td>
<td>(compact deposit silty-sand & small stones)</td>
<td>Hardcore for road</td>
</tr>
<tr>
<td></td>
<td>5.3m. wide, 0.17m. high Iron Age</td>
<td>(compact deposit silty-sand & small stones)</td>
</tr>
<tr>
<td></td>
<td>425 Road foundation deposit or trackway</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron Age</td>
<td></td>
</tr>
<tr>
<td></td>
<td>410 Brushwood mat Iron Age</td>
<td></td>
</tr>
<tr>
<td></td>
<td>428 Trackway Iron Age</td>
<td></td>
</tr>
<tr>
<td></td>
<td>430 Buried soil</td>
<td>533 Buried soil</td>
</tr>
</tbody>
</table>
neglected pastures and hedgerows (www.jncc.gov.uk/pdf/JNCC308 FChap.pdf; accessed 13.04.10). The brushwood was buried beneath a deposit of trampled earth, perhaps redeposited from the trackway at the sides of the road. The working of this soil by burrowing fauna suggests that the ground was somewhat drier than the earlier livestock track.

The chronology for the initial phase of trackway use is determined by three radiocarbon dates for the brushwood mat, and two OSL dates for the muddy trackway deposits below and above the mat. The three radiocarbon dates for the elder brush (Table 7) fall within the Iron Age and early Romano-British periods. The underlying trackway deposit was dated through OSL to between BC 191 and 149 AD, while the overlying trackway dates to between BC 321 and BC 1. Bayesian modelling of this data has indicated that the trackway was created in the Mid-Late Iron Age around 200–5 cal BC (95% probability) and probably 130–40 cal BC (68% probability).

Road Stage 1

In Area 4 the lower trackway deposits had been overlaid with a cambered road of sand and compacted gravel 5.3m.–6.38m. wide and 0.2m. thick. Initially this was interpreted as the first phase of Roman road construction, but, however, the evidence from scientific dating shows that this was also constructed in the Mid-Late Iron Age, with fills from an adjacent and contemporary gully and fence line dated through OSL to between BC 371 and BC 11. The modelled date ranges for this phase fall within the Late Iron Age, 125 cal BC–cal AD 35 (95% probability) and probably 80–1 cal BC (68% probability). In Area 4 the surface comprised compacted river pebbles up to 80mm. diameter in a matrix of finer gravel, in Area 5 rounded pebbles 30–100mm. diameter. The stake-holes found in a gully running along the downhill side of the road could represent the remains of a low wattle fence which had been erected to retain the edge of the road.

Road Stage 2a

The overlying surface was a hard, well constructed road of compacted river pebbles and gravel up to 90mm. diameter (context 420, Area 4 and context 527, Area 5; Figures 35a and 35b). The width of the metalled surface was 6.38m. and the thickness of cobbling was 0.1–0.17m. in the centre of the deposit. There were no adjacent ditches. In Area 4 it is possible that context 420 was a partial renewal and expansion to context 423, making a combined width of c.5.5m.

Road Stage 2b

A subsequent resurfacing was recorded (context 418, Area 4, and context 514, Area 5) 6.42–7.14m. wide, and 0.2–0.27m. thick. In Area 5 this was constructed from markedly different raw materials to the earlier phases, with river pebbles no larger than 10mm. diameter rammed into a smooth compact surface, indicating complete renewal of the earlier roadway, bands of larger stones suggesting repaired ruts in the surface (Figures 35a and 35b). The axle-width between these ruts was 1.9m., and the ruts themselves were 0.12–0.17m. wide. The reason for this change in material might have been to create a smoother surface for wheeled traffic, or it could have been just the result of a different source for the pebbles. There is little available data on the axle width of excavated British vehicles from this period, but the four-wheeled wagon found in the great burial at Hochdorf, Germany, had an approximate axle width of 1.5m. (Landesdenkmalamt Baden-Wurttemberg 1985, fig. 78).

There were no adjacent ditches for Stage 2b, which was sealed by colluvium (contexts 417, 421 and 512) OSL dated to between BC 261 and BC 1. In Area 5 a row of stake holes (context 515) was driven through the Stage 2b road surface, but they were not detected as features within the colluvium.

During Stage 1 the presence of a timber and stake fence line along the southern edge of the road suggests that either an attempt was being made to limit spread of the road materials downslope to the south, or perhaps that there was a stock enclosure or paddock alongside the road. It is possible that the row of stake holes along the northern margin of the road in Area 5, Stage 2b, had a similar function. Road layouts of this kind have been seen at Silchester, with fence-lined metalled roads dated to the early 1st century AD.

The overall width of the road increased through time from 4.5m. (brushwood track) to 7.14m. (Stage 2a metalled surface in Area 5 (see Table 11)). The implication therefore is that throughout the later Iron Age the road grew in status from a simple drove way to a carefully engineered and well maintained stone road, and also that sufficient resources were available for its construction and upkeep. This would indicate that it represented an important route, perhaps connecting with the wider road network, such as The Portway along the ridge of Sharpstone Hill, as well as crossing it to continue further in a north-westerly direction. Iron Age infrastructure in the local area would have required links between principal centres, such as the Wrekin to the east, the Burgs hillfort at the south-western end of Sharpstone Hill, and the hillfort at Haughmond Hill to the north-east, and also over long distance routes. Contemporary settlement is known from excavation at the Weeping Cross site, little over 1km. away to the northeast, and the general area would have been completely settled and in agricultural usage (Bassett 1990, 10).
Figure 35a Comparative sections of road sequence from Areas 4 and 5.
Figure 35b
Interpretive phasing of road sequences.
The interpretation of this sequence was made possible by the fact that in the central portion of the site the road passed through a wet hollow into which colluvium had accumulated over time. As a consequence of this, each phase of resurfacing had been deeply buried, protecting it from later activity. Elsewhere on the site the firm boulder clay and relatively level topography meant that any traces of the earlier road had been lost, in part perhaps through subsequent road construction, but also due to ploughing.

Phase 3: Late Iron Age – Roman Transition

The evidence for activity at the site in the 1st century AD, and later, comprised the road itself running the width of the quarry extension area, with field systems to the north and south and scattered shallow burnt pits perhaps indicative of camp fires. Pottery and coin evidence demonstrate the continued use of the road throughout the Roman period with particular emphasis during the 2nd century AD.

Road Stage 3

The final road surface comprised compacted river pebbles (contexts 413 and 508) which had been badly damaged by later ploughing, although wheel-ruts were still evident, indicating wear of the surface by traffic over time. The road was constructed in the same manner as the preceding stages, creating metalled surfaces 6.42m. wide in Area 4 and 5.72m. wide in Area 5 (with a 0.2–0.3m. thick deposit of cobbles in the centre; Figures 35a and 35b).

The defining characteristic of the later phases of the road design was the presence of two sets of ditches running parallel to the road, an outer set (which is interpreted as having the function of defining a boundary for the road) and an inner set (called flanking ditches to differentiate them) (Figures 36a and 36b). The flanking ditches were identified in Areas 1, 2 and 3 and were evident as wide, shallow features filled with cobbles and without any pottery, whereas the boundary ditches were seen in all areas and defined as deeper, ‘U’-shaped features, with no stone in their fills, and with pottery sherd included at two areas along the northern ditch.

The pottery is very abraded, with broad date ranges, and some potential inversion of stratigraphic relationship leading to earlier sherds occurring in contexts above later ones. The overlap for all dates seems to lie with the 2nd century, and the occurrence of several sherds from discrete vessels suggests that the pottery is not derived from manuring spreads, but comes from complete vessels broken in proximity to their discovery locations. This evidence and the find of a roof tile could suggest the presence of a roadside building; the function of the vessels is for drinking (jars and beakers), which might therefore indicate a place where travellers could find refreshment.

Mutationes were spaced approximately every 6.4km. along Roman roads to provide stables for mounted messengers to change horses and often acted as taverns. The site at Sharpstone Hill is adjacent to a permanent source of water (the pond) and is south-facing, and it lies approximately 6.5km. from Wroxeter along the route which leaves the town by its north-western entrance and crosses the river at Atcham, so the circumstantial evidence would support such a hypothesis.

The construction of the Sharpstone Hill road in this period was broadly uniform along its length, with ditches bordering the road to the north and south (Figure 36a). Firstly, narrow, outlying boundary ditches defined a road
Figure 36a Overview of road components (late phase)
Figure 36b. Detail of road contexts (late phase).
zone between 16.4m. and 19m. wide (17m. or 58 Roman feet the most common) and 191m. long. The boundary ditches appeared to terminate around Area 5, but the road continued downhill to the east as a deepening, infilled hollow way, and faint traces of the roadside ditches were detected again where the hollow way began to level out. This distance between boundary ditches is consistent with demarcation of Roman road zones of 19m. or 25.5m. (Birmingham Roman Roads Project).

Secondly, flanking ditches immediately to the north and south of the road surface were observed in Areas 2 and 3, defining a typical road width of c.7.5m.–8.5m. (approximately 27 Roman feet). This measurement is also consistent with the width normally associated with major Roman roads of between 7–9m. (Birmingham Roman Roads Project). It is likely that the ditches continued upslope to the west for a total length of 140m. Although they are not visible as surface features, resistivity data obtained following the topsoil strip at the start of the excavation clearly show the flanking ditches as higher resistance features up to 60m. longer than the visible extent. This result was matched by a ground probing radar survey, which identified the flanking ditches as strong, complex anomalies (Stratascan 2009b).

During the construction of the road the clay excavated from the flanking ditches might have been used to create the road agger, but this had been truncated and so it was not possible to record the surface construction at these points. Flanking ditches were not present in Areas 4 and 5, but the depth of burial at these points meant that the road surface, though damaged by ploughing, had survived. Here the road width was between 5.7m. and 6.4m. (c. 20 Roman feet), constructed in a single phase from compacted river pebbles. There was no evidence for resurfacing of the road during the Roman period.

The only indication of road maintenance was noted in Areas 4 and 5, where the northern boundary ditch had been recut in slightly different positions. The need for its re-excavation was probably due to the in-washing of sediment from the hillside to the north. The southern boundary ditch had not been recut at any time. A later ditch crossing the flanking ditch to the south of the road in Area 2 may also indicate upkeep of the road drainage system but it was not possible to determine the age of this feature.

The field system to the north and south of the road was stratigraphically contemporary with the excavation of the boundary ditches, seen in Area 4 where the deep colluvium had preserved the complete profile of one of the ditches. This was 1.02m. deep; elsewhere later ploughing had left only 0.3m. depth surviving below the top of the natural: a useful indicator of the effect ploughing and later land use can have on the depth and appearance of archaeological remains. No complete land units were recorded; the most complete plot defined by ditches [604] and [605] (Figure 9) measured at least 23m. × 23m.

Phase 4: Post-Roman Activity

In the post-Roman period the route of the road appears to have retained some significance within the landscape, evidenced most strongly by a loose track of conglomerate chippings which overlay the former road. Geophysical anomalies indicate that medieval ridge-and-furrow ploughing followed its orientation (Figure 2). These anomalies were not visible following the topsoil strip near the road, but anomalies seen further to the north in the area of the other (conjectural) Roman road were clearly visible as buried ridge-and-furrow strips during the watching brief. The implication therefore is that the road dictated the grain of the local agricultural landscape for many years, from its inception, following land clearance in the Iron Age, through to determination of the orientation of later Roman and medieval field systems. There is also, however, perpendicular plough damage to the Roman road surface in Area 5 which might indicate a hiatus in its use, and this event is sealed beneath the loose chippings of the later trackway.

The date of this final trackway is unknown, but it is likely to fall within the later post-medieval period, for the following reasons: the ridge-and-furrow indicates a long duration of ploughing prior to the perpendicular plough scars and the track’s formation, whereas the earliest historic mapping for the site gives no indication of a track at this location. The find of a George III coin dated 1806 could help in suggesting that the perpendicular plough scars might be attributed tentatively to ploughing during the Napoleonic Wars, or that the final trackway was in use at this time. The Apportionments note that the area to the south was rough pasture by the 19th century, and the field name was given as ‘Burridges’ which is a derivation from Bulerigge meaning “bull ridges” (Hannaford 2001). This name must be a reference to the ridges left by medieval cultivation, earthwork features created by ploughing with oxen (‘bulls’), a technique clearly necessary if arable production is to be successful on such poorly drained clay soils.

Discussion of Road: Comparative Excavations

Aerial photographs of Sharpstone Hill before Bayston Hill Quarry was excavated show that the road followed a straight course across the hilltop towards the settlement at Meole Brace. Photograph 1970 OS-70071 (Figure 37)
shows the two boundary ditches visibly continuing across the hilltop as crop marks, an indication that the layout and construction of the road was uniform beyond the excavated area.

The final phase (Road Stage 3) can be compared with the construction of the road as it passed through the settlement at Meole Brace around 0.9km. to the northwest. Beyond the limits of the 2nd century Roman settlement which was the focus of excavation (Hughes 1994) the road was 6m. wide, constructed in a single phase with no flanking ditches or evidence of repair, suggesting that the natural gravels provided the drainage for the road. It was also described as virtually indistinguishable from the natural gravel subsoil, indicating the very local source of the material which was used for metalling. Within the settlement the road width was constrained to between 4.8m. and 5m., with a distinct camber 0.35m. in height formed by three successive stages of pebble surface with layers of silt as foundations. The final phase is recorded as consisting of pebbles 10–50mm. in diameter, with wheel ruts that were 1.5m. apart. Although there was no direct dating for the road, silty deposits had encroached on the surface prior to the establishment of the settlement, and therefore the excavators thought that it might date from the second half of the 1st century. The settlement itself was also difficult to date, but it consisted of a small ribbon development for 190m. alongside the road, with six phases starting in the 2nd century, with an early 3rd century hiatus, followed by continuation into the late 3rd or early 4th century.

Excavations in 2009 were also undertaken on Margary Route 64 where the road passed through Newtown, Powys. These excavations recorded a 210m. length of the road, which consisted of three main phases (Grant and Jones 2010). The first phase had a clay foundation 0.2m. thick, on which river gravels had been laid, making a road width of 4.5m. and 0.1m. thick. The second phase of road comprised a roadside ditch and an episode of metalling which used graded river gravels compacted onto the surface of the first phase, and in which wheel-ruts were evident. A Trajanic coin (98–117AD) was found in the make-up for this phase. The third phase consisted of further deposition of river cobbles over the surface of Phase 2, a roadside ditch to the south, and, in one area excavated, a widening of the road to 6m. which covered over the flanking ditch. During initial investigation in 2006 a large pit (2.6 × 0.75m.) was found, which pre-dated the road construction, but as yet this remains undated.

All three excavations through Margary’s Route 64 (Sharpstone Hill, Meole Brace, and Newtown) have a similarity in that they show evidence for three main stages of road surfacing. In addition pre-road pits have been found below the *agger* at both Sharpstone and Newtown. By comparison an excavation through Watling Street at Overley Hill (Figure 38) revealed a very similar design to that observed at Day House Farm; a 6m. wide clay-filled trench

Figure 37 Air photograph of Sharpstone Hill, taken in 1970, showing cropmark of road.
Figure 38: Roman Road network for the region.
with rutted pebbles above (Hannaford 1994). Evidence of other Roman roads often contains only a single phase of construction (e.g. the many observations of the road from Salinae (Middlewich) – Mediolanum (Whitchurch) (York 2010). If a single phase of activity is assumed sufficient for many Roman roads, then the multiple stages of construction witnessed at Sharpstone Hill reinforce the impression of longevity that the road must have enjoyed.

Discussion of Road: Chronology and Dating Techniques
The application of complementary techniques of scientific dating has revolutionized our ability for assessing the significance of the road, and greatly enhanced understanding of it. Radiocarbon determination of the brushwood mat, Optically Stimulated Luminescence dating of the sedimentary sequence as the road developed, and the mathematical modelling of these results in relation to stratigraphic principles, have allowed refined date ranges for the major events connected with the construction and use of the road. Although at least one of the dates obtained appears to have a date range out of sequence, i.e. with an earlier date in deposits overlying a sample which came up with a later date, this apparent discrepancy can be accounted for by the possible re-deposition of lumps of sediment. During this event the individual grains within the lump might not have been exposed to daylight, and thus when sampled these grains have provided a date when they were last affected by sunlight. If there had only been one or two dates suggesting an Iron Age date for the road, then the results would have been questionable. The large number of samples and their stratigraphic cohesion, however, greatly strengthen the reliability of the scientific dating of the monument. In addition, the fact that different techniques have been used, which broadly corroborate the results of each technique, provides confidence in the attribution of an Iron Age date to the various stages of road construction.

The chronology of the final phase of road construction is difficult to interpret. An OSL date obtained from the deposit overlying the road surface in Area 4 returned a date of deposition between BC 61 and 119 AD, modelled to give a date range of 105 cal BC–cal AD 105 (95% probability) and probably 65 cal BC–cal AD 40 (68% probability). This would suggest that statistically it is more likely that the road surface and its ditches were created and fell into disuse before 43 AD, while the artefact evidence clearly shows that the road was in use during early Roman times, and possibly as late as the 3rd century AD. There are a number of possible explanations for this. For example there may be a ‘missing’ phase of road surfacing in Areas 4 and 5 destroyed by ploughing, similar to the degree of damage as seen on the higher ground to the west. Alternatively the OSL sample might have encountered stockpiled sediment from the road surface, which had eroded in situ, resulting in minimal exposure to sunlight and an artificially early date range. Ultimately we can say that the road was almost certainly created in the 1st century AD, using the line of an existing and well established road, and that the artefacts associated with it relate to its continued use throughout the 2nd, and possibly the 3rd, century AD, corresponding to the known date of settlement to the west at Meole Brace. The identification of numerous small fires within the roadside area towards the top of Sharpstone Hill might be an indication that this was a frequent stopping point on the road, the pond possibly representing a useful watering place for animals.

The fact that the Roman road followed an Iron Age predecessor is significant, as it implies that road builders were adapting not only routes, but also pre-existing roads, where possible, rather than starting from scratch. This has been seen elsewhere, such as Ryknield Street at Tupton in Derbyshire, where the Roman road was discovered to ford Redleadmill Brook using a timber-piled foundation dated to the Late Iron Age or the early Roman period (Wall 1993), and on the same road at Sutton Park (Sutton Coldfield, Birmingham), where the agger overlay a gorse brushwood foundation (www.brrp.bham.ac.uk: accessed 29.07.10). Similarly at Oakengates, in Telford, Watling Street was constructed on a timber foundation (Margary 1967, 292). An early road from the Midlands to North Wales, which pre-dated the Roman Wroxeter – Chester infrastructure, has been identified (Waddelove and Waddelove 2004, fig. 6), and a cobbled surface for it found at Edgeley Hall, Whitchurch (ibid., 103–104). It has also been argued that some of the roads in the Wroxeter area are probably pre-Roman routes (Bassett 1990), and fell into disuse before 43 AD, while the artefact evidence clearly shows that the road was in use during early Roman times, and possibly as late as the 3rd century AD. There are a number of possible explanations for this. For example there may be a ‘missing’ phase of road surfacing in Areas 4 and 5 destroyed by ploughing, similar to the degree of damage as seen on the higher ground to the west. Alternatively the OSL sample might have encountered stockpiled sediment from the road surface, which had eroded in situ, resulting in minimal exposure to sunlight and an artificially early date range. Ultimately we can say that the road was almost certainly created in the 1st century AD, using the line of an existing and well established road, and that the artefacts associated with it relate to its continued use throughout the 2nd, and possibly the 3rd, century AD, corresponding to the known date of settlement to the west at Meole Brace. The identification of numerous small fires within the roadside area towards the top of Sharpstone Hill might be an indication that this was a frequent stopping point on the road, the pond possibly representing a useful watering place for animals.

The fact that the Roman road followed an Iron Age predecessor is significant, as it implies that road builders were adapting not only routes, but also pre-existing roads, where possible, rather than starting from scratch. This has been seen elsewhere, such as Ryknield Street at Tupton in Derbyshire, where the Roman road was discovered to ford Redleadmill Brook using a timber-piled foundation dated to the Late Iron Age or the early Roman period (Wall 1993), and on the same road at Sutton Park (Sutton Coldfield, Birmingham), where the agger overlay a gorse brushwood foundation (www.brrp.bham.ac.uk: accessed 29.07.10). Similarly at Oakengates, in Telford, Watling Street was constructed on a timber foundation (Margary 1967, 292). An early road from the Midlands to North Wales, which pre-dated the Roman Wroxeter – Chester infrastructure, has been identified (Waddelove and Waddelove 2004, fig. 6), and a cobbled surface for it found at Edgeley Hall, Whitchurch (ibid., 103–104). It has also been argued that some of the roads in the Wroxeter area are probably pre-Roman routes (Bassett 1990), including one that might have crossed the Severn north of the later town. If indeed this route (Basset’s road C and discussed further in White 2006) existed, then it would be logical for it to have followed the approximate course of the B5065 westwards from Norton, crossing the Severn at Atcham and continuing west through Chilton to Betton Strange; this would also be on alignment with the road excavated at Sharpsitone Hill in 2009 and at Meole Brace excavated in 1994. Finally, the projection of this road westwards necessitates a crossing of the Rea Brook, and it has been suggested that this fording point had pre-Roman origins (Barker et al. 1991, 16).

Contextual Interpretation: a Re-examination of Margary’s Route 64 and the Romanization of Cornovii Territory
In the Iron Age the site fell within the tribal territory of the Cornovii, centred on Viroconium (Wroxeter) and Deva (Chester) according to Ptolemy (Cunliffe 2005, 210). It has been noted that the general paucity of material remains
from this period in the region make the spatial extent, identity and material culture of the Cornovii difficult to define, though extensive aerial reconnaissance and well documented earthwork features indicate that the Severn valley around Shrewsbury and Wroxeter was widely populated with many small enclosure settlements (187 sites in the Wroxeter Hinterlands Survey study area, Ellis 1993–95, 12), and a number of significant hill forts. This perhaps suggests that the material culture exists, but has, as yet, not been investigated in detail, and presents a picture of a populated agricultural landscape at odds with the former ‘hillfort-focussed’ notion of Iron Age settlement (Wigley 2002, 2). Similarities between some of the larger forts in the region suggest that there was contact with tribes in the South East of England, but in general it was not until the annexing of the area by the Roman army under Ostorius Scapula after AD 48 that there was significant change to the regional population structure.

During the Roman conquest of Britain the establishment of a military zone running southwest–northeast across the country, defined by the route of the Fosse Way, was instrumental in the development of a Roman province in the South East, buffered from independent tribes in the West and North (Cunliffe 2005, 224). The tribal area of the Cornovii fell within this military zone, and a legionary fortress was established at the strategically important site of Wroxeter in around AD 58 on the site of earlier marching camps, as part of the campaigns to the west in Wales. It is supposed that a treaty had probably been negotiated with the Cornovii for their territory to act as a ‘buffer state’. It is against this background that a road is presumed to have been driven west into Wales from the fortress at Wroxeter to the campaigning forts at Forden Gaer and Caersws to the southwest (Figures 37 and 38).

Whilst this road has long been known about, its precise route between Wroxeter and Meole Brace has been subject to a number of interpretations. In 1918 Thomas Codrington stated: From Wroxeter it is probable that a Roman road went to Caersws, an undoubted Roman station three miles west of Newtown, Montgomeryshire, and 34 miles in a straight line from Wroxeter. The natural access to it would have been from Wroxeter, and a road to it would be in the direction of Higden’s continuation of Watling Street to Cardigan, but there is no trace of it.

Almost twenty years later the Roman Roads Committee published a report on investigations into the route between Wroxeter and Meole Brace:

On 20 July 1929 the committee met at Betton Strange Hall with the object of tracing the Roman road which ran between Wroxeter and Meole. Behind the Hall it was found as a raised causeway along the western edge of a pond running north/northwest towards Sutton. On the Ordnance map this is marked as a footpath running straight to Sutton Hall, where it becomes a roadway towards Meole. In the opposite direction the road was traced southwards to Betton Abbots. A little to the east of the farm-house it shows as a lane with hedges on both sides entering the road to Betton Pool at right angles. Here it is blocked by the hedge of the latter road, but beyond the hedge it was discernible crossing the grass-land as a straight road, well cambered and ditched on both sides. The third field was ploughed and planted with mangolds. But beyond is a place called King Street (now marked by two cottages). Close to one of the cottages the Roman road again appears as a short length of lane with hedges on both sides. Here it diverges eastwards in order to avoid the two Berrington Pools. This was as far as it was investigated, but it undoubtedly went on through Berrington to Watling Street and crossed to Wroxeter by the same bridge as that highway. (Forrest, 1938.)

This section of the route, as described above, is incorporated into Ivan Margary’s ‘Route 64’:

A western road led from Wroxeter to the south of Shrewsbury, through Meole Brace. It took off apparently from the southern end of the Severn crossing on Watling Street (West) on a course to the north of Berrington not yet ascertained. From King Street it is represented by a line of hedgerows, footpaths and lanes, past Betton Abbots and Betton Strange to Sutton. Here the Shrewsbury by-pass now occupies its course to Meole Brace, where the road begins a long alignment due west. (Margary 1955, 344)

Alongside the field observations of the Roman Roads Committee, the evidence on which Margary based this route was from fieldwork which identified a possible road surface at Stanley Lane, Meole Brace (Houghton 1958). The description highlights the fact that the precise course of this road as it left Wroxeter remained unknown. Further analysis of the possible course of the road from Wroxeter to Forden Gaer has been undertaken by Hugh Toller in recent years, through use of aerial photographs and examination of maps. This suggests a more direct route from Wroxeter to Meole Brace (Figure 39), but it is unsubstantiated through ground survey or excavation evidence (Toller pers. comm.).

Archaeological excavation (Ellis et al. 1994) has positively identified a road located some way to the south of Margary’s route from Sutton, progressing westwards at Betton Strange and heading across Sharpstone Hill to Washford, Meole Brace, before continuing west past Nobold (Figure 39). Aerial photographic evidence supports this, with cropmarks observed to the south of Day House Farm near Nobold, and a possible upstanding agger to the south-east. This part of the alignment was confirmed when a 100m. length of road was recorded during watching brief and trial trenching works, the road appearing as a 6m. wide cut containing a puddled-clay and cobble foundation (Hannaford 1994, 70). In contrast during the A5 works watching briefs at Sutton Hall...
Figure 39 Reconstructed pattern of prehistoric and Roman roads, Iron Age forts, Villas and Cadastre, based on historical mapping and archaeological evidence, with an inset showing the area around Sharpstone Hill.
and Mount Edgbold Farm failed to identify traces of Roman road (ibid.), adding weight to the suggestion that Margary’s route is incorrect.

Excavations in advance of the A5 Shrewsbury bypass in the 1990s confirmed the course of the route at this location, with settlement at Meole Brace flanking the road in the area of the current A5/A49 roundabout (800m. to the west of the current site), and cropmark evidence identified for the road heading south-east across Sharpstone Hill (Hughes 1994, 31) (cf. Figure 1b). The excavation could not confirm the date of the road’s creation, but noted that it might have been in use for some time before the adjacent settlement was established in the mid-2nd century, with deposits of silt overlying the edges of the road to a depth of 0.2m. The excavation demonstrated that the settlement was up to around 190m. long, with strip buildings extending approximately 40m. back from the road front, characteristic of linear (or ribbon) developments. The settlement did not display any evidence of formal planning, the timber structures apparently reflecting local vernacular styles, rather than strong Roman influence, the largest structure of a type that might have Iron Age origins (Ellis et al. 1994, 53). The artefact assemblages suggest that the settlement had a service function, with evidence of traded pottery wares, baking and smithing, later becoming more domestic in character. Three pottery kilns dated to the 3rd – 4th centuries have been found 200m. south of the settlement (Evans et al. 1999), demonstrating the industrial nature and resilience of activity at Meole Brace.

The settlement apparently continued to be occupied throughout the 3rd and 4th centuries, though silt deposits overlying some of the earlier features were thought to indicate contraction of the settlement in the 3rd century. The abandonment in the 4th century is unusual, as small settlements commonly thrived into the post-Roman period.

The maximum width of the road as it passed through the settlement was 5m., reduced in some areas due the presence of buildings. The maximum surviving height of the road camber was 0.35m. The road comprised thin layers of compacted pebble surfaces interspersed with silt layers, probably representing phases of resurfacing. No resurfacing was noted after Phase 4, dated to AD 200–250, and no drainage ditches were apparent (Hughes 1994, 34). It is suggested that the naturally free-draining local gravel soils in this location meant that drainage ditches were unnecessary. The road was more obviously maintained within the settlement, with resurfacing contributing to the distinct road camber; outside the settlement to the northwest the road had apparently not been maintained to the same degree. It has been badly damaged by subsequent ploughing and is visible as a band of discolouration in the subsoil 6m. wide.

Following on from the work of Bassett in identifying Iron Age routes in the Wroxeter landscape, Roger White has suggested that an earlier route might have existed between Wroxeter and Meole Brace, taking a more direct route past the northern edge of the later fortress and passing thorough Atcham (White 2006, 155). He argues that the known route (i.e. Margary 64) (which passes through Viroconium before crossing the Severn on the road south to Worcester, before turning north and then heading on a convoluted path to the west (Figure 39)), might have been a later construction, influenced by the presence of the town and the opportunity for trade which the road passing through offered. White also suggests that the two roads might have co-existed for some time, offering travellers the option of either route.

The route suggested by Margary seems a quite illogical design for a Roman pattern of communication, unless it was making use of a pre-existing Iron Age road. The argument that the remarkably straight course of Watling Street from Gailey Hill and Pennocrucium through Oakengates to Overley Hill (west of Wellington) (Figure 38) was an early military road, severing Iron Age communications and property boundaries, is logical. Its continuation further west and into Wales is also logical, connecting to forts such as Forden Gaer and Caersws, and the route proposed by White that this road might have taken through Atcham and Chilton to Betton Strange and Meole Brace is eminently more logical than that proposed by Margary. The evidence from the excavations at Sharpstone Hill have confirmed not only this road, but they also suggest confirmation of Bassett’s hypothesis for a surviving pattern of routes laid out in pre-Roman times (Figure 39). The fact that Watling Street changes direction at Overley Hill to take a more south-westerly alignment, rather than continuing due west, also suggests that the Roman engineers decided to use an existing Iron Age route and crossing place of the Severn at Atcham.

The road has been dated to the c.1st century cal BC, and therefore it is not of Roman military origin. The reasons for its construction and purpose therefore require a new interpretation. A continuation of the alignment east from Sharpstone Hill over the river crossing at Atcham would allow access not only to what later became Wroxeter, but also to The Wrekin which is visible from Sharpstone Hill and lies almost due east from it. As the paramount central place within Cornovii territory the need for a road to service The Wrekin would be logical. In the other direction the road from Sharpstone Hill proceeded north-west to Meole Brace, and although it could have continued west towards Yockleton and Westbury as evidenced by the Roman road (Margary Route 64), it might instead have taken a north-westerly route, through Copthorne and Shelton, west of Shrewsbury, before crossing the Severn and following a route past the Iron Age fort at Nesscliffe, to Old Oswestry and/or the copper-rich area around Llanymynech (Figure 38). Indeed a route might well have existed which would have continued north to the Dee valley and then west along this to cross Snowdonia and on to Anglesey.
Although communication routes are to be expected linking prehistoric settlements, it has seldom been suggested that these were more than trackways. Within some forts and tribal centres (such as Danebury and Silchester) hard-surfaced streets have been recorded, and there is also a large body of evidence for timber trackways in wet areas, sometimes including stone-built causeways. The road at Sharpstone Hill is different, in that it was a properly engineered structure with compacted imported river cobbles, cambered to facilitate drainage, and built on a core foundation of compacted silt. It was therefore designed for all weather usage and for the passage of heavy vehicles. Its function might have been to allow the exchange of produce from the rich farmlands of the Midland plain with the mineral-rich areas of the Welsh hills, a function which would have necessitated the movement of carts and waggons over long distances. Alternatively a potential parallel with itinerant kings in the medieval period could suggest that the road was built to facilitate the movement of royal households from one Cornovian centre to another. As such it would have continued as an essential element of the Roman infrastructure for both military and economic purposes during the early Roman period (see Webster 1991, 64–66, for example), but the lack of evidence for its upkeep during later Roman times suggests that its importance as an arterial route waned.

The implications of the scientific dating and interpretation of the road at Sharpstone Hill are significant. Firstly its construction must have derived from careful planning and implementation of an original concept. Technical skills were available to survey and engineer the road, and a powerful authority would have provided the resources and permission to allow its construction across the landscape. In addition the existing understanding of the Roman road network has been challenged, and now requires testing to see how much of this could in fact be of earlier origin. A study of historic mapping around the area of Shrewsbury and Wroxeter to plot the Roman roads that have been identified by previous scholars, and an application of analysis to tease out those routes that may be plausibly pre-Roman, is shown in Figure 39. As part of this analysis, by Caroline Malim, it became apparent that underlyng the pattern of major routes a secondary grid could be detected, on a fairly rigid north-south, east-west alignment. This grid is depicted on 19th century mapping as small roads, lanes, paths and boundaries, which when highlighted can be seen to form a co-axial pattern in the landscape. It is possible that these represent remnants of a major period of deliberate re-organization of the landscape, and their association with centres such as Condover and Whitley Villa could indicate a link with Romano-British estates. As a further outcome from this project investigating the road across Sharpstone Hill, therefore, it is tentatively proposed that this grid might have been designed as a system of cadastre imposed on the fertile lands of the Midland Plain in the hinterland, or even territorium, of Wroxeter, similar to systems identified in northern Gaul (Bonnie 2009), and occasionally for Roman Britain such as at Christchurch in the Fens (Phillips 1970). The grid conforms with some of the major Roman alignments such as the west-east Watling Street and its continuation through Yockleton and Westbury, and also for the road north from Wroxeter to Whitchurch, but the co-axial nature of these small roads is not consistent with a pattern of long-distance routes which cut across them diagonally, and follow more sinuous courses. Further study is required to understand the dynamics of the Iron Age and Roman infrastructure, and the implications for the local division of the landscape and economic units that operated in it. The investigations at Sharpstone Hill have established that there is a need for a reconsideration of the Roman road system; they may also prove to be a catalyst for a wider reappraisal of the Romanization of the Cornovii.

Acknowledgements

The fieldwork, analysis and publication of the investigations at Sharpstone Hill have been made possible by the generous funding provided by Tarmac. In particular Malcolm Lawer and Huw Evans have been very supportive and gave every assistance to the archaeological programme as the project developed.

The overall strategy was designed by Tim Malim (SLR) who managed the project throughout. On site direction of fieldwork was by Laurence Hayes (SLR), who also produced the stratigraphic analysis and site narrative. Illustrations have been completed by Laurence Hayes and Caroline Malim, including the 3-D reconstruction of the road, and Caroline also undertook the analysis of historic maps to define the potential ancient routes and cadastre grid pattern of lanes, paths and boundaries.

The site works were supervised by Gerry Martin (Gerry Martin Associates) with the assistance of Gwynfor Maurice, John Onraet, Richard Woolley, Berba Wouda, Adam Stanford, Andy Towe and Mark Swain. Gerry’s experience and skill were essential in guiding the depth to which the initial soil strip needed to go, removing a remarkable amount of colluvial overburden in order to reveal beneath it the remains of the road and other features. We are indebted to his professionalism, motivation and commitment in achieving such a massive archaeological excavation and record within a matter of just over three months.

On site sampling and subsequent analysis were undertaken by Ben Gearey (Birmingham Archaeology Environmental) Martin Bates (Trinity St. Davids, Lampeter), Lisa Moffatt (English Heritage), Dave Peat and Jean-Luc Schwenninger (Oxford University Research Laboratory for Archaeology and the History of Art). Site surveys
were carried out by Alan Williams of Sigma Surveys. Geophysical surveys were carried out by Richard Fleming, Allen Wright, David Miller and Amanda Dawson at Stratascan Limited. Metal detecting and aerial photography services were provided by Arthur Evans, Colin Sharratt and Chris Delamont.

Advice on landscape context was provided on site by Roger White and Ben Gearey (Birmingham University) and Hugh Hannaford and Andy Wigley (Shropshire County Council), and information on alternative roads and routes was given freely by Hugh Toller, Bob Sylvester (Clwyd-Powys Archaeological Trust). Mike Watson (Shropshire County Council) oversaw the project for the mineral planning authority and his insistence that the road must be investigated allowed the project to happen at all.

The specialist analyses contained in this report were prepared by Alice Lyons (Roman pottery), David Shotter (coins), Ben Gearey, Roz McKenna, Pam Grinter and David Smith at Birmingham Archaeoenvironmental (palaeoenvironmental remains), Richard Macphail at the Institute of Archaeology, UCL (soil micromorphology) and Dave Peat and Jean-Luc Schwenninger at the Oxford University Research Laboratory for Archaeology and the History of Art (optically stimulated luminescence dating). Peter Marshall (Chronologies Co.) undertook the mathematical modelling of the results from the scientific dating. Comments on the stone artefacts were made by Luke Barber (Sussex Past). Conservation work was undertaken by Yannick Minvielle-Debat at the University of Bradford.

Bibliography

Bonnie, R., 2009, Cadestres, Misconceptions and Northern Gaul: A Case Study from the Belgian Hesbaye Region.

Codrington, T., 1918, Roman Roads in Britain (3rd edition).
An Engineered Iron Age Road Recorded at Sharpstone Hill, 2009

Margary, I., 1967, Roman Roads in Britain.

Murphy, C. P., 1986, Thin Section Preparation of Soils and Sediments.

York, A., 2010, I Once Was Lost But Now I’m Found.

http://www.iaa.bham.ac.uk/research/projects/wmrrfa/seminar2/Mike_Hodder.doc: accessed 08.04.10
http://www.jncc.gov.uk/PDF/jncc308_FChap2.pdf; accessed 13.04.10
http://worcestershire.whub.org.uk/cms/environment-and-planning/archaeology: accessed 08.04.10
http://www.brrp.bham.ac.uk accessed 29.07.10
Abstract: This article presents a synthesis of previous investigations at The Wall, including analysis and publication of the lost archive from John Pagett’s excavation in the 1960s, and the use of computer modelling to produce artistic reconstructions of the monument. The latter has enabled a fresh approach and interpretation to be formulated for understanding the possible concept and function of the multivallate banks and ditches that enclose the 12ha. site. The Wall totally occupies an island within the Weald Moors, an area described by historic texts as a lowland morass with dense thickets, but also one that attracted significant prehistoric activity represented by Bronze Age burnt mounds and metalwork deposition. Although conventionally classified as an Iron Age fort, The Wall’s banks and ditches have never been dated, and its location is atypical within the region for such a function. This article therefore presents an alternative explanation for its complex design and intention, showing how it mirrors that of the classical labyrinth, explaining the ceremony and symbolism behind this iconic image, introducing the Welsh tradition of the turf-cut Caerdroia (Caer y troiau) or the ‘City of Turnings’, and also the Celtic mythological entrance to the underworld, via the spiral castle Caer Sidi.

Part 1 Archaeological Context (by Tim Malim)

Introduction

The Wall is the name by which a substantial multivallate enclosure is known, still preserved largely intact as a series of earthwork ramparts enclosing an area of c.12ha., occupying an entire island of sandstone within the originally wet and wooded peatland of the Weald Moors (Figure 1). It has also been called Wall Camp and Wall Fort, and its outer ramparts define what would have been the edge of the surrounding contemporary wetland, with the interior rising to 7m. at its highest. Shropshire has a large number of prehistoric enclosures, many of which are believed to be defended and some of such size that they are labelled forts (Table 1). Investigations and surveys have been conducted at many of the most prominent, some of which have been published, and an analysis of the less impressive ‘smaller’ enclosures (as distinct from hillforts) has been recently published (Wigley 2007).

In 2010 the owners of the Wall agreed funding from Natural England’s Higher Level Stewardship grant for the production of a series of interpretation boards so that information would be available for educational visits by local schools. The process of researching for these information panels, visiting the site, hunting down site archives, and producing reconstruction drawings allowed us to undertake analysis with an entirely fresh approach, and the following paper presents a summary of existing evidence and previous assumptions, together with a surprising hypothesis about the concept behind construction of this exceptional monument.

Earthwork Survey 1975

The surviving banks and ditches of The Wall have been plotted by the Ordnance Survey and a study of historic mapping shows the minimal differences in detail between succeeding publications. In 1983 an excavation was
conducted in the interior by the Central Excavation Unit of the DoE covering an area of 60m. by 7m. north-east of the farm (Figure 2a) (CEU excavation code 257), and prior to this a survey had been undertaken to produce accurate profiles through the existing earthworks and add details of less visible parts which the OS mapping had not reproduced (Bond 1991). In this article the archive was said to have been deposited at Rowley’s House Museum in Shrewsbury, but enquiry in 2010 showed no record of the museum having received it, nor was it in English Heritage’s store at Atcham, and there was no record in the National Monuments Record for a survey at Wall Fort. Further searching eventually tracked the archive down to Ludlow Museum and Resource Centre. Although the results of the earthwork survey were not published in Bond’s article, a copy of them was found to survive in the archive, as small-scale annotations to a 1:2500 OS map (replicated here in Figure 2b) with labels saying ‘Revised: ASP 29.9.75’ and ‘Revised: ASP 18.12.75’. Four profiles across the main bank are shown as well as a fifth one that depicts not only the main bank but also three ditches and three smaller (counterscarp) banks. The latter have been taken through the northern earthworks with heights for the main bank as 1–1.5m. and the heights of the smaller banks as 0.5–0.6m. each. The profile through the main bank on the north-eastern side records it as 1–1.5m. high, the south-eastern profile shows a main bank 0.8m. high, and two profiles through the south-western bank shows one surviving to only 0.3–0.6m. high, and the other 1.8–2m. high. There is also a label on the outer bank on the north-eastern side which reads ‘Outer banks average 0.5m. in height’.

Figure 1 Location map showing The Wall on its island within the Weald Moors and its relationship to The Wrekin.
Early investigations 1919 and 1960s

Two previous excavations through the ramparts had been undertaken according to the Shropshire Historic Environment Record. The first was a cutting made in 1919 through the main *vallum*, observed by T. C. Cantrill, which had exposed ‘two retaining walls filled in with a wide band of clay and rubble’. The second was over several seasons between 1962 and 1965 by John Pagett and the Wrekin Archaeological Group, and although the exact location of the trench was not recorded, the farmer’s memory (*pers. comm.* Mrs. Dobson), and circumstantial evidence from the length of the trench and its orientation, suggest that it was situated just south of the road at the western end of the circuit (Figure 2b and 2c). No report was ever produced, but several notes were published which give an insight into what was found, and Pagett’s changing interpretation as the work progressed. These are reproduced below in full:

WELLINGTON (WREKIN ARCHAEOLOGICAL GROUP)

Wall Farm, Kinnersley (36813178) The site consists of about 30 acres enclosed by a multivallate earthwork, the main bank of which is about 8 ft. above the level of the ground inside. It is presumed to be of Iron Age date. A trench cutting through the main bank and at least two ditches are being excavated. The only information on the structure revealed to date is as follows. The outer of the ditches has been recut, the inner disturbed; the bank was faced by walls on both sides, that on the outside having been robbed. What appear to be the remains of an earlier bank on a different line have been found at the back of the bank inside. No dating evidence has been found so far. (West Midlands Archaeological News, 5, 1962).

WREKIN ARCHAEOLOGICAL GROUP (WELLINGTON)

Wall Farm, Kinnersley (33/681178) The excavations on the large defended enclosure reported in the last issue of the News-Sheet have been continued during the year. The section through the defences to date shows
Figure 2b OS map showing The Wall as earthworks with 1975 survey annotations showing the height of banks and the depth of ditches, plus the estimated location of the 1960s trench, and the 1983 trench.
The Walls of Troy: A Classical Labyrinth at The Wall, Kynnersley

John Pagett died without publishing his results or interpretation. He was a person known to several archaeologists and local history societies, but generally it was not believed that he would have been the instigator and director of such an investigation at The Wall. By asking several people who had known him it became apparent that some of his notes and photographs had been rescued from his home by Mary McKenzie, and eventually a box and rolls of drawings were located at Shropshire Archives (SA reference: 7351). On inspection this ‘archive’ box revealed some notes, slides of various Roman sites (not exclusively in Shropshire), drawings often relating to Roman sites such as Redhill, as well as a notebook on botany and other unrelated matters.

Amongst the drawings three rolls of graph paper had a series of coloured section drawings with a fourth one which was entitled ‘Wall Farm, Kynnersley, Bank Section East Face’ (Figures 3a and 3b). One section drawing has 1962 written on it. Together the sections recorded the cutting Pagett made through the multiple banks and ditches...
Figure 3a Photograph of the four rolls that comprise the 1960s section drawing showing coloured layers.
Figure 3b Line drawing to show Main layers depicted in the 1960s section with three of the four rolls joined together and one slightly separate.
at The Wall. These depict a main bank c.7 ft. 6 ins. (2.28m.) high from the base of the trench (which appears to have been cut into natural) or 5 ft. 6 ins. from the base of the bank where it meets natural. The trench measured a total length of at least 63 ft. (19.2m.), with labelling from left to right reading ‘Ditch III, Counterscarp II, Ditch II, Counterscarp I, Ditch I’ whilst the main bank was unlabelled. If the latter is a continuation of the other three rolls then the total length would be 83 ft. (25.3m.). The final recut in Ditch III measures c.1 ft. 6 ins. deep and 8 ft. wide and with large stones and animal bone shown in the fill. Counterscarp bank II is c.2 ft. – 3 ft. high and up to 16 ft. wide. Ditch II is 6 ft. – 8 ft. wide with a U-shaped recut c.3 ft. deep, and counterscarp bank I is c.2 ft. – 3ft. high by up to 17 ft. wide (with the core dump material being 1.5 ft. high and 7 ft. across a flat top). Ditch I is c.2 ft. deep by 10 ft. wide, but could extend to 3 ft. deep and 18 ft. wide if the section drawing indicates a more extensive ditch which has been infilled during modifications to the main bank. This wider ditch might therefore include a U-shaped palisade trench for revetment of the original main bank, at least 1 ft. deep and 2 ft. wide. The main bank itself was 5 ft. 6 ins. high and 18 ft. wide.

In addition some further details with survey data and partial plans were drawn on graph paper (these drawings are reproduced here as Figure 4), but the northern-most end of the main rampart is unfinished and there must therefore have been a final part which is now missing. The section drawing is on graph paper and 10 ft. lengths are marked, starting with 150 in the centre of Ditch III (5 ft. in from the left end of the graph paper), and extending through the next two rolls to 100 with 8 ft. more on the graph paper before the end of the roll. The fourth roll is the main rampart ‘Bank Section, East Face’ but this does not continue the numbering system, although it has been drawn at the same scale. Instead it gives a 3-D impression of two grid pegs located slightly off line from the regular interval of the graph paper; the first is labelled 130 and the second 120. The detail within rolls 3 and 4 therefore do not match up exactly, but they could be broadly the same area of the section, and the top and bottom lines of the drawn earthwork meet precisely. Together with the brief notes replicated above it is now possible to reconstruct and reinterpret Pagett’s record of the banks and ditches.

A comparison between Pagett’s notes replicated above and his site drawings shows that the multivallate earthworks consisted of three ditches and three banks (two described as counterscarp banks in the section drawing). An additional ‘recut’ ditch and a bank are mentioned in the notes as running beneath and to the rear of the main bank, but these do not appear to be shown in the section drawing. The main bank is described as having been constructed in at least four phases, and the section drawing would suggest that this must refer to the inner-most bank, which is the largest. The bank was of ‘dump construction’ or clay without internal bracing, built on to the natural turf line, and faced with stone facing on either side. Pagett also describes some stakeholes ‘at the western end of the trench’ which, he suggested, might have been a revetment for the ‘outer bank’, but the section drawing has a small plan appended beneath the western part of the main bank which shows a collection of stakeholes (Figure 4a), and in the section approximately above this plan there are four black vertical marks, which could indicate evidence for post-pipes in the section. This drawing (roll 4) is ‘East-facing section’ whilst

Figure 4a Plan of stakeholes (redrawn from Pagett Archive).
Figure 4b: Plan of the feature recorded by Paget (Photocopy from Paget Archive).
The plan of stakeholes could be showing that the trench was oriented south-southeast–north-northwest through the earthworks. The apparent confusion between Pagett’s written description of the western end (which implies a west–east oriented trench) and ‘outer western face’ (WMANS, 5, 1965) and the East Face beneath the section drawing of the main bank in roll 4 (which would imply the trench is orientated north–south because the section faces east) can be attributed to loose use of terminology for a trench skewed to the cardinal points: sometimes he thought of it as north–south and sometimes as east–west and for ease of writing he used cardinal directions rather than the more clumsy south-west and north-east.

Pagett used colour in his section drawing and this enables more interpretation than would otherwise have been the case. Not all blocks of different colour have lines defining them, but they are clearly representations of visible differences in the section. I suggest that the colouring scheme used red for sandstone (natural geology), pink for re-deposited sandstone and gravel, orange and yellow for different deposits of sand and clay, grey for organic-rich or charcoal-rich layers, and brown for loam/soil formation (Figure 5).

Correlation between Pagett’s textual description in the published notes (none survived in the archive) and the drawn section provides a broad degree of correspondence, but with some anomalies. He states that the main bank was excavated to natural and that the base was defined by a turf line (Trans. Caradog and Severn Valley Field Club, 16, 1965, 83). The drawing would suggest that the trench has been cut down into the natural sandstone, but a turf line is not shown. He says that the main bank was of dump construction (Trans. Caradog and Severn Valley Field Club, 16), faced by walls on both sides, but that the outer side had been robbed (WMANS, 5). The drawing
does not have a roll showing the north-eastern end, so the evidence for stone facing on the interior is missing, but to the south-west a possible late intrusion shown in the section could be interpreted as having derived from a robber trench on the outer face of the bank. Pagett attributed at least four periods of construction to the main bank, but ‘corresponding alignments do not always coincide’ (WMANS, 8). This phrase would be consistent with dump construction, and presumably one side of the trench and the other did not produce identical sections. The drawing shows three main deposits which would be consistent with the number of ‘periods’ he suggested (WMANS, 6). The inner ditch was described as ‘disturbed’ (WMANS, 5), which the drawing clearly shows is the case. Stakeholes are recorded at the ‘western end of the trench’ and interpreted as a possible revetment to the outer bank (WMANS, 6), but the drawing would seem to suggest that these were in fact at the western end of the main bank, rather than the outer-most bank, which is labelled on the drawing as Counterscarp II.

The intensity of fieldwork throughout the period of Pagett’s investigations is unknown, and whether a single trench was left open to continue excavation in successive seasons, or whether new cuts were made each year, or the trench extended over successive seasons, so that the entire series of banks and ditches could be investigated, is unclear. Thus the sample record that survives is unsurprisingly ambiguous and incomplete. The following description is therefore how I interpret what has been represented by Pagett and his team in the section drawing and in his published notes (Figure 6).

Phase 1 Bank

If we presume that the red at the base represents natural geology, then above this in the main bank there is a band of large stones shown at the north-eastern end: logically this deposit would represent the upcast of the natural rock from excavation of one or more of the ditches. The stones are set in a pink background which extends southwards, and the top of this pink deposit and of the stones has been drawn relatively level except at its northern and southern extremities where the deposit dips down. This could suggest re-deposited sub-soil.

A thick deposit coloured orange is shown above, with a yellow capping on the central and southern part of the deposit, and a thin black band above this. The latter could represent a turf line, suggesting a period of stabilisation when the bank was grassed (see Phase 2 below).
Figure 6 Interpretation based on the 1960s section and Pagett’s published notes. (Red line denotes Phase 1 bank.)
Phase 1 Ditch: Revetment

A small ditch with black vertical bands (post-pipes?) in the base can be seen at the southern end of the bank. This coincides approximately with a plan of stakeholes on the same roll of graph paper set out below the section drawing, and could imply evidence for some kind of revetment. The abrupt edge to the Phase 1 bank also suggests that there was a retaining structure. A deposit on the south-western side of this possible trench for a timber revetment could represent a berm between the revetment and Ditch I.

The plan of stakeholes shows two rows of four stakeholes, plus three more in an L shape. The two rows could therefore replicate the four vertical bands within the section drawing. If the plan and section are at the same scale then the diameter of the stakeholes would be c.6–7cm., but they look larger and further apart than the vertical bands on the section drawing, so presuming that the plan is at twice the scale of the section, the stakeholes would be c.3.5cm. diameter and some 10–12cm. apart, with rows c.18cm apart from one another.

Phase 1 Ditch

South-west of these vertical lines the top of natural can be traced rising slightly and then dipping again beneath the area labelled Ditch I, and within which a yellow fill labelled 6 can be seen. This latter deposit is an infill episode and so must indicate a separate phase. The original Phase 1 ditch can be seen as a remnant beneath the U-shaped stony-filled feature and extending for a short distance to the south-west before it is cut by the later ditch that is infilled by the yellow deposit 6.

Phase 1 Counterscarp Bank

Progressing further south-west from Ditch I a rise in the natural sandstone shows the edge of this ditch, with a thin yellow layer shown overlying it, and above this a thick orange deposit has been depicted. Although circles for numbers are apparent, these deposits have none attributed. These deposits represent the upcast that created Counterscarp I.

Phase 1 Ditch II

The deposits described above can be seen to slump south-westwards into a depression in the sandstone caused by the cutting of Ditch II. Insufficient evidence is presented to allow any attempt to phase Ditch II, Counterscarp II or Ditch III.

Phase 2 Abandonment and Stabilisation Horizon

A thin band of grey extends over the Phase 1 bank, the revetment trench and part of the Ditch I infill. This could indicate the establishment of a turf over the earthworks, or a charcoal-rich horizon. The Phase 1 ditch has been infilled and the revetment trench truncated at a level much lower than the height of the bank. The stabilisation horizon is also evidently sealing the north-eastern part of the Phase 1 Counterscarp I.

Phase 3 Remodelling of Main Bank and Ditch I

A cut through the stabilisation horizon and deposits for Counterscarp I can be seen on the section drawing, which remodelled and extended Ditch I south-westwards. A large yellow-coloured deposit can be seen covering the stabilisation horizon over the south-western part of the main bank, extending it over the revetment trench and the Phase 1 ditch. This implies a re-use of the monument with construction of an enlarged main bank and ditch. It seems likely that the stone face referred to by Pagett was probably applied in this phase, perhaps as a more robust revetment than that implied by flimsy stakeholes, but also for the imposing appearance a stone wall would give to the bank. The vertical face to the Phase 4 infill episode (see below) might be due to its deposition against a wall face.
Phase 4 Infill of Phase 3 Ditch I

An orange-coloured deposit is shown on the section drawing as a large plug infilling the south-western part of Ditch I. There is no indication for tipping or several fill episodes, so either this deposit represents a continual gradual accumulation over a long period of time, or one major event to fill in the ditch deliberately. If the latter was indeed the case, then the material used might have been pushed in from the counterscarp (and possibly the main bank) which would have considerably reduced the prominence of the banks and ditches.

Phase 5 Abandonment and Stabilisation Horizon

A grey band is shown covering the Phase 3 bank deposit and also sealing the Phase 4 ditch fill. This probably represents the growth of turf over the unmaintained monument.

Phase 6 Robber Trench and Insertion of Drainage Channel

A grey-coloured area shown on the section drawing extends through the centre of Ditch I and culminating in a U-shaped, stone-filled channel at the base. This represents disturbance to the monument’s bank and ditch, it slopes in from the north-east and has a vertical edge to the south-west through the Phase 4 infill deposit. Pagett reports that the stone wall had been robbed from the outer face, and this could be the origin for the disturbance shown on the section drawing. To this phase could also be added a second U-shaped, stone-filled channel shown in Ditch II, which together with that in Ditch I would be similar to many agricultural drains which were cut and filled with gravel and small stones to improve drainage of the land.

Phase 7 Soil and Grass Accumulation

The section drawing shows that all deposits are capped by the modern turf line and B-horizon, with the exception of a rectangular cut shown in Ditch III which must therefore be assigned to a more recent phase.

No dating evidence was retrieved by Pagett, but based on the results of Bond’s excavations and general consensus Phases 1 – 4 would be of Iron Age date, with Phase 5 probably Roman. Phase 6 is probably of post-medieval date, and the fact that Wall Farm is not built of stone (and therefore not the cause of the stone-robbing) hints at other economic causes such as when the hill was quarried for stone during construction of the Shrewsbury Canal between 1793 and 1796, or for use as road stone during Loch’s drainage improvements to the Lilleshall Estate of the Marquess of Stafford in the early 19th century (Leah et al. 1998, 83–5).

The 1983 Excavation

The results of Bond’s excavation in the interior in 1983, however, are published (Bond 1991) and the archive is also available for study (Figure 7). In summary, Bond found evidence for at least one, probably two, 11m. diameter round-houses, consisting of eaves-drip gullies and stakeholes, one with an entrance to the west, a remnant of clay floor and pottery. A radiocarbon date from a mixed sample of oak and willow charcoal within the second gully (context 115) gave a date range of 390calBC – calAD70 (2110 ± 90 Har-6392). Two four-post structures were also identified, and possibly a third, as well as other post-holes and small pits. The presence of a midden between the two buildings was also suggested. Two ditches were found, one that might have functionally separated the two buildings from each other, and which contained pottery. According to analysis of this ceramic assemblage (Morris in Bond 1991) the pottery was dated from the 3rd century BC and was dominated by stony VCP (very coarse pottery) with a few sherds of ‘Group D’ ware; no Romano-British wares were found. VCP is associated with the transportation and movement of salt from Cheshire through the West Midlands and Marches area. Morris describes 103 pieces which were submitted for macroscopic examination at Southampton University, of which 94 were prehistoric including 89 VCP sherds. The archive includes a list of these sherds listed by context, but there is also a box of unreported sherds with a wide range of post-medieval and one possible Roman Samian sherd as well (Figure 8). It is uncertain whether the prehistoric sherds have been returned to the archive as they are not present within the box entitled ‘pottery box 2’, but instead within a small box labelled ‘6 – iron and baked clay’ a collection of very small abraded sherds of porous material have been kept, which could perhaps be VCP. The archive also contains an assemblage of animal bone (Figure 9), mention of which is absent from Bond’s publication, and a list of five further charcoal samples sent for radiocarbon determination.
The Walls of Troy: A Classical Labyrinth at The Wall, Kynnersley

95

The North-West Wetlands Survey 1990s and Geophysical Survey 2008

English Heritage’s North-West Wetlands Survey examined the Weald Moors in 1994–6 and plotted several lithic finds and locations of burnt mounds (Leah et al. 1998, 69–85). They noted that the moor would have extended originally for c.8km. east–west alongside the various Strine brooks, and at its maximum it would have been c.3km. wide. They also noted the degraded nature of the peat, surviving only to 0.5m. in the vicinity of The Wall,
and thus no monolith core was taken for paleoecological assessment or radiocarbon dating. The burnt mounds and finds of bronze metalwork were sufficient to assign the growth of the peat to the Bronze Age, with silty and sandy clays beneath. A study of one burnt mound showed that the peat originated as reed swamp, which developed into a wooded fen-carr environment with abundant sedges over time. The survey also refers to Plaxton’s comments in the 17th century about the heavily wooded and scrub-like vegetation of the moors, how waterlogged they were (‘a morass’ around The Wall (Figure 10)), and how difficult it was to move cattle through the moors (Leah et al. 1998, 79; Houghton 1873, 104–5). A tenement was created at The Wall in the 16th century and a causeway

Figure 9 A selection of animal bone found in the 1983 excavation archives.

Figure 10 The Weald Moors before post-medieval drainage? (Carr woodland; photo Roger Rogers.)
The Walls of Troy: A Classical Labyrinth at The Wall, Kynnersley

constructed between the island and Buttery to the south-east, which finally connected it to the larger island of Kynnersley.

A geophysical survey undertaken in 2008 for a water main which ran through the northern part of the Wall suggested the presence of a burnt mound and other possible features (Arcus 2008), although subsequent monitoring of the pipeline found no archaeological evidence to support the geophysical interpretation.

Discussion of The Wall in Relation to other Iron Age Enclosures

This summary of archaeological evidence for The Wall shows its remarkable survival as an important monument from prehistoric times. The radiocarbon date and pottery obtained during the 1983 excavation of the interior (Bond 1991) does not, of course, provide definitive dating for the banks and ditches which might have originated in early prehistoric times, but it certainly suggests that the enclosure was being used during the Iron Age. Comparison with other enclosed sites in Shropshire (Table 1; Figure 11) shows that The Wall is one of the largest (at 12ha. only the massive Llanymynech (57ha.) and huge Titterstone Clee (28ha.) are larger), and that it is one of comparatively few that occupy a wetland location rather than a hilltop (7 out of 57). It is also only one of three enclosures with five sets of banks and ditches, out of 29 examples that have more than a single circuit (Old Oswestry and Bury Ditches, Lydbury, also have up to five sets). Table 1 has been prepared on information provided by Shropshire’s Historic Environment Record (HER) (searching for forts and larger enclosures); some uncertain sites and those with virtually no information have been removed, and one site added: Whittington. The latter has been identified through the recent work on the castle as part of its conservation management plan (Brown 2003). A series of curving banks and ditches is clearly visible in fields west of the medieval castle, which on morphological grounds would appear more similar to other Iron Age enclosure circuits rather than to a medieval castle. They define either a c.4ha. D-shaped enclosure which incorporated the later castle and spring, or a much larger c.8ha. oval circuit which included the historic centre defined by Top Street to the north and a stream to the south. This multiple-banked enclosure which is located in a low lying area, with marsh to the north-west and possibly marsh to the south-east, historically surrounded by a heavily wooded area, is an interesting comparable site to The Wall at Kynnersley. The Wall and the Wrekin have inter-visibility between them, and Whittington and Old Oswestry have a similar relationship.

Table 1 lists 57 sites, of which only seven can be described as lowland enclosures. The data presented in this table has been compiled from the HER records but has not been checked on the ground or through other corroborative evidence. At least three entries are probably for enclosures that would not have been in Cornovii territory (i.e. they lie west of Llanymynech and Oswestry), and there are others that have been entered only because of their historic attribution as a fort. Many smaller enclosures have been detected by aerial photography and are not included (see Wigley 2007 for further discussion), whilst others adjacent to marshy areas have been identified by the North-West Wetlands Survey (Leah et al. 1998). To undertake a more comprehensive survey of Cornovian forts further data from Cheshire, and parts of Clwyd-Powys, Staffordshire, Worcestershire, and Herefordshire, would be necessary. The sample within Table 1 is therefore perhaps not representative of the whole tribal territory, but provides some comparative material from the Cornovii heartlands for The Wall.

Analysis of Table 1 shows that the Shropshire ‘forts’ may be grouped on size into four bands:

a) Major enclosures over 10ha. in size
b) Large enclosures 6 – 10ha. in size
c) Medium enclosures 3 – 6ha. in size
d) Small enclosures less than 3ha. in size

Three sites occupy the Major category including The Wall at Kynnersley, whilst there are twice as many for the Large category (6). The largest of these is The Walls at Chesterton, Worfield, near Bridgnorth, at 9.5ha. and located on the edge of Cornovii territory. It was constructed with drystone walling revetment, similar to that described for The Wall at Kynnersley. This category includes famous sites such as Old Oswestry, The Wrekin, and Bury Walls, as well as Abdon Burf and Norton Camp. The Medium category includes nine sites ranging from 3.1ha.-4.7ha., plus Whittington based on existing evidence (although this might be found to fit better with the Large category), whilst the remaining 38 sites are Small enclosures.

The distinction between a ‘fort’ and an enclosed settlement or farmstead is not well defined in the classification system used by HERs (see Wigley 2007 for a discussion of enclosures), but in general smaller enclosures are considered defended farms whereas larger, especially hilltop, enclosures are regarded as ‘forts’. Many of these latter occupy strategically commanding topographic positions, overlooking valleys and routes, and perhaps also boundaries. Llanymynech’s massive size stands out as exceptional, and this might be because of its importance
for the mining and smelting of copper, lead and zinc, but also because it was probably on the western boundary of Cornovii territory. Old Oswestry is similarly located as a probable western bastion for the tribe.

There are six sites within Table 1 that have been found to contain VCP, indicating trade in salt from the Cheshire wiches, and also perhaps material evidence for wealth and the presence of a controlling elite. The Wall and The Berth have both revealed VCP within the minimal assemblages collected during small-scale investigations. In addition The Wrekin, as well as Ebury Camp, Uffington, Burrow Hill Camp, Hopesay, and Castle Farm, Shifnal, have produced assemblages of sherds from VCP containers.

The Wall is a major site, enclosing a whole island (including a small knoll) of c.12ha. in total. It is set within a wet and wooded area which would have added to the security of the location. It cannot, however, be regarded as being located within a strategically commanding position. With the exception of Whittington the next largest ‘lowland’ enclosure (in fact two enclosures) is The Berth at Baschurch. This site has produced some exceptionally

Figure 11 Map of Shropshire showing forts and enclosures listed in Table 1.
Table 1 Iron Age forts in Shropshire.

<table>
<thead>
<tr>
<th>Name</th>
<th>Registration details</th>
<th>Easting</th>
<th>Northing</th>
<th>Univallate</th>
<th>Multivallate</th>
<th>Size</th>
<th>Topographic location</th>
<th>Excavation dates</th>
<th>ditch depth</th>
<th>ditch top width</th>
<th>Bank height</th>
<th>Bank width</th>
<th>Dating evidence</th>
<th>Other features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caer Gyrgan, Old Oswestry</td>
<td>HER361 SM27556</td>
<td>329510</td>
<td>331160</td>
<td>3 banks</td>
<td></td>
<td>8.4 ha</td>
<td>Contour, plateau, E & W</td>
<td>1938-40, Valley not published</td>
<td>2.4 - 8m</td>
<td>stone revetted</td>
<td>4 phases from 6th century BC</td>
<td>settlement, metal working</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ebury Camp, Uttington</td>
<td>HER113 SM35866</td>
<td>356000</td>
<td>316400</td>
<td>3 banks</td>
<td></td>
<td>3.6 ha</td>
<td>Contour fort, summit, 80m above River Severn, at 90mOD</td>
<td>2044, published in Ant. J 28, 1944, 1977 Stanfurd SC 74 1984</td>
<td>24.7 - 23.4m</td>
<td></td>
<td>VCP Health rampart (1949)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cowlall Knoll, Bucknoll</td>
<td>HER118 SM22945</td>
<td>330000</td>
<td>273400</td>
<td>3 banks</td>
<td></td>
<td>3.4 ha</td>
<td>Contour fort, summit of hill, 2 entrances W, S, N, E</td>
<td>1580-1590</td>
<td>1.5m inside 12m outer</td>
<td>5m - 10m</td>
<td>3m - 8m</td>
<td>2 annex enclosures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castle Farm, Shifnal</td>
<td>HER283 SM19697</td>
<td>372470</td>
<td>309540</td>
<td></td>
<td>1 ha</td>
<td>1.02 ha</td>
<td>Contour fort, stream on S side, 124mOD</td>
<td>1960 BUFALL Roe A, TG1586877, 1991</td>
<td>3m inner 4m outer</td>
<td>2.5m outer</td>
<td>0.5 - 1m</td>
<td>VCP & FB pot 2 pits, hearth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castle Ring, Worston Bank, Withney</td>
<td>HER104 SM24046</td>
<td>331500</td>
<td>309600</td>
<td>3 banks</td>
<td></td>
<td>1.02 ha</td>
<td>Contour fort, views in all directions, entrance NE, oval, 350mOD</td>
<td>1581 Musson C & Northerer P 1266</td>
<td>0.15m</td>
<td>1.5m</td>
<td>dry-stone wailing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Ditches, Wybunbury Castle, Rushbury</td>
<td>HER377 SM19697</td>
<td>356240</td>
<td>294240</td>
<td>3 banks</td>
<td></td>
<td>0.75m</td>
<td>Contour fort, entrance S, W</td>
<td>1581 Musson C & Northerer P 1266</td>
<td>0.75m</td>
<td>8m</td>
<td>2 hearths, pit, 162B1-A260, 363-119BD, Re coins</td>
<td>copper, zinc, lead, ore working</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilmington, Chirbury with Brompton</td>
<td>HER286 SM36600</td>
<td>302040</td>
<td>302040</td>
<td>2 ditches</td>
<td>Contour fort</td>
<td>0.15m</td>
<td>1.5m</td>
<td>dry-stone wailing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good y Gaer, Oswestry Rural</td>
<td>HER111 SM19697</td>
<td>323240</td>
<td>328690</td>
<td></td>
<td>Contour fort, Isolated hill</td>
<td>0.75m</td>
<td>8m</td>
<td>2 hearths, pit, 162B1-A260, 363-119BD, Re coins</td>
<td>copper, zinc, lead, ore working</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bwlch y Gwynl, Oswestry Rural</td>
<td>HER116 SM19697</td>
<td>320900</td>
<td>324500</td>
<td>small</td>
<td>Hlltop, narrow ridge NE-SW, 220mOD</td>
<td>3m</td>
<td>Dry-stone wailing</td>
<td>1581 Musson C & Northerer P 1266</td>
<td>0.75m</td>
<td>8m</td>
<td>2 hearths, pit, 162B1-A260, 363-119BD, Re coins</td>
<td>copper, zinc, lead, ore working</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Bunr Walla, Hawkestone</td>
<td>HER139 SM34910</td>
<td>357500</td>
<td>327500</td>
<td>3 banks</td>
<td>Hlltop, steep slope E & W</td>
<td>1890 BUFALL Roe A, TG1586877, 1991</td>
<td>3m inner 4m outer</td>
<td>2.5m outer</td>
<td>0.5 - 1m</td>
<td>VCP & FB pot 2 pits, hearth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Registration details</td>
<td>Easting</td>
<td>Northing</td>
<td>Unvallate</td>
<td>Multivallate</td>
<td>Size</td>
<td>Topographical location</td>
<td>Excavation dates</td>
<td>Ditch depth</td>
<td>Ditch top width</td>
<td>Bank height</td>
<td>Bank width</td>
<td>Dating evidence</td>
<td>Other features</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>16</td>
<td>Norton Camp, Cullington</td>
<td>HER156 S4M4943 SD477820</td>
<td>348700</td>
<td>285200</td>
<td>✓</td>
<td>7 ha</td>
<td>360x250m</td>
<td>Hilltop, entrance to E, D-shaped</td>
<td>1960s, Honre C & Jones G TSAHS 66p15 185/66</td>
<td>4m (inner)</td>
<td>6m (outer)</td>
<td>spring, 7 hut circles</td>
<td>occupation 2nd - 4th century AD</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Nesscliffe, Oliver's Point</td>
<td>HER1057 S4M4911 SJ6861974</td>
<td>388660</td>
<td>319740</td>
<td>✓</td>
<td>6.7 ha</td>
<td>310x185m</td>
<td>Hilltop, cliff to N, NW, W, Vales N & W to Wales, D-shaped, 140-150mOD</td>
<td>1960s, Honre C & Jones G TSAHS 66p15 185/66</td>
<td>4m (outer)</td>
<td>6m (outer)</td>
<td>rubble construction revetted with sandstone blocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Caes Castle, Westbury</td>
<td>HER246 S4M3848 SJ077079</td>
<td>335700</td>
<td>307500</td>
<td>✓</td>
<td>4.7 ha</td>
<td>560x200m</td>
<td>Hilltop, summit, entrance to S, NE</td>
<td>1960s, Honre C & Jones G TSAHS 66p15 185/66</td>
<td>4m (outer)</td>
<td>6m (outer)</td>
<td>causeway to entrance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Broome Hill, Camp, Hopesay</td>
<td>HER105 S4M4941 SG3169527</td>
<td>358160</td>
<td>283070</td>
<td>✓</td>
<td>4.2 ha</td>
<td>450x285m</td>
<td>Hilltop, entrance SW, E, 310-350mOD</td>
<td>1960s, Honre C & Jones G TSAHS 66p15 185/66</td>
<td>4m (outer)</td>
<td>6m (outer)</td>
<td>IA pot, VCP 2 springs, 20 house platforms, causeway entrance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Carynham Camp, Carynhall</td>
<td>HER416 S4M19160 S0544627373</td>
<td>354460</td>
<td>273750</td>
<td>✓</td>
<td>4 ha</td>
<td>480x190m</td>
<td>Hilltop, summit, entrance to N, sub-rectangular</td>
<td>1950-61, '61-64 Goffin PB TSAHS 1958</td>
<td>4m (inner)</td>
<td>6m (outer)</td>
<td>4.1m - 5.5m 20m 3 phases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Earls Hill, Pontesbury</td>
<td>HER1055 S4M4903 SJA0848</td>
<td>340600</td>
<td>304900</td>
<td>✓</td>
<td>3.75 ha</td>
<td>370x200m</td>
<td>Hilltop, entrance steep to E, views all directions</td>
<td>1950-61, '61-64 Goffin PB TSAHS 1958</td>
<td>4m (outer)</td>
<td>6m (outer)</td>
<td>4.5m - 6m 10.5m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Bury Ditches, Lydbury North</td>
<td>HER105 S4M19168 S0324784573</td>
<td>332740</td>
<td>287470</td>
<td>✓</td>
<td>3.8 ha</td>
<td>340x280m</td>
<td>Hilltop, summit, entrance to N, sub-rectangular</td>
<td>1950-61, '61-64 Goffin PB TSAHS 1958</td>
<td>1.9m (inner)</td>
<td>4m (outer)</td>
<td>1.8m 4m (outer)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Caer Caradoc, Church Stretton</td>
<td>HER226 S4M19159 S047752</td>
<td>347700</td>
<td>209200</td>
<td>✓</td>
<td>3 ha</td>
<td>450x160m</td>
<td>Hilltop, entrance to N</td>
<td>1950-61, '61-64 Goffin PB TSAHS 1958</td>
<td>0.5 - 0.8m 5m - 7m 10m - 12m</td>
<td>0.5 - 1.7m 6m (outer)</td>
<td>spring, causeway to entrance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 24 | Roverses Hill Camp, Lytham | HER1221 S4M19181 SO2609248 | 302600 | 292420 | ✓ | 2.8 ha | 264x10m | Hilltop, mound, entrance to SE | 1939-58, Cambell L TCSWVF 1940, 1940-59, 1959-61, 1961, 1962 TCSWVF 1915, 1939 Chitty L | 0.2m (inner) | 4m (outer) | one stone
2.8m | 5.8m (outer) | Neolithic IA material
hearth |
| 25 | Haughhead Hill, Ullington | HER135 S4M417661 SLE3739/378 | 352760 | 313270 | ✓ | 2.6 ha | 210x19m | Hilltop, entrance to S | 1913, Camblin FC TCSWVF 1915, 1939 Chitty L | 2.4m (outer) | 4m (outer) | march to NE, undistinguished fort? |
| 26 | Caer Caradoc Camp, Clun | HER1161 S4M4937 S031017579 | 331010 | 275790 | ✓ | 2.1 ha | 375x120m | Hilltop, mound, entrance to SE, D-shaped | 1913, Camblin FC TCSWVF 1915, 1939 Chitty L | 0.5 - 2.6m 10m - 14m 7m | 0.5 - 1.7m 6m (outer) | spring, causeway to entrance |
| 27 | The Burghs, Bayston Hill | HER650 S4Salop148 SJA4840976 | 348940 | 309750 | ✓ | 2.1 ha | 210x10m | Hilltop, entrance to SE | 1913, Camblin FC TCSWVF 1915, 1939 Chitty L | 1.2m (inner) | 4m (outer) | 12.15m, stone |
revetment with timber lashing |
<p>| 28 | Cawdor, Chibbury with Brempton | HER1219 S4Salop134 S02973988 | 327470 | 295490 | ✓ | 2 ha | 200x100m | Hilltop, N-S ridge, entrance S | 1913, Camblin FC TCSWVF 1915, 1939 Chitty L | 1.2m (inner) | 0.5m 2.6m (outer) | 1.7m 14m |
| 29 | Bodwell Rock Camp, Llanboidwel | HER1429 S4Salop13 SLE665523 | 326600 | 322800 | ✓ | 1.6 ha | 200x100m | Hilltop, entrance NE, 210-225mOD | 1913, Camblin FC TCSWVF 1915, 1939 Chitty L | 1.2m (inner) | 0.5m 2.6m (outer) | Dumped rubble construction |
| 30 | Roverses II, Lytham | HER1222 S4M19182 S02229027 | 332290 | 292700 | ✓ | 1.6 ha | 200x100m | Hilltop, entrance to SE | 1913, Camblin FC TCSWVF 1915, 1939 Chitty L | 1.2m (inner) | 0.5m 2.6m (outer) | Dumped rubble construction |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Registration details</th>
<th>Easting</th>
<th>Northing</th>
<th>Univallate</th>
<th>Multivallate</th>
<th>Size</th>
<th>Topographic location</th>
<th>Excavation dates</th>
<th>Ditch depth</th>
<th>Ditch top width</th>
<th>Bank height</th>
<th>Bank width</th>
<th>Dating evidence</th>
<th>Other features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Billings Ridge, Lydbury North, Kinlet</td>
<td>HER154 SM34640 SD30692796</td>
<td>331759</td>
<td>267990</td>
<td>✓</td>
<td></td>
<td>1.7 ha</td>
<td>Hill top, ridge</td>
<td>2010</td>
<td>6m</td>
<td></td>
<td>1m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surf Castle, Claverley, Pontesford Hill Camp, Pontesbury, Beddington, Church Shelton</td>
<td>HER1245 SM19122 SC44593479</td>
<td>344500</td>
<td>294790</td>
<td>✓</td>
<td></td>
<td>1 ha</td>
<td>Hill top, promontory, pre-pit, entrance to E</td>
<td>1983</td>
<td>1.2m</td>
<td>8m (outside)</td>
<td>1.7m</td>
<td>6m - 10m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rust Hill, Hopeasell, Watton Camp, Northen with Sheaves</td>
<td>HER1349 SO40078477</td>
<td>340700</td>
<td>284770</td>
<td>✓</td>
<td></td>
<td>0.5 ha</td>
<td>Hill top, summit, entrance to NE</td>
<td>1983</td>
<td>3.2m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preston Springs, Lee Brockhurst</td>
<td>HER1246 SM19135 SO52085843</td>
<td>350290</td>
<td>298630</td>
<td>✓</td>
<td></td>
<td>0.15 ha</td>
<td>Hilltop, NE-SW slope, entrance to NE</td>
<td>1983</td>
<td>0.4m</td>
<td>3.6m</td>
<td>0.5m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raddnor Wood Camp, Clunbury, Wall Ford Camp, Kynnersley</td>
<td>HER150 SM31680 SC30281775</td>
<td>350290</td>
<td>298630</td>
<td>✓</td>
<td></td>
<td>0.5 ha</td>
<td>Hilltop, NE-SW slope, entrance to NE</td>
<td>1983</td>
<td>1.6m</td>
<td>6m</td>
<td>6.5m - 12m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Berth, Becherch</td>
<td>HER120 SM34998 SJ02222388</td>
<td>350290</td>
<td>298630</td>
<td>✓</td>
<td></td>
<td>3.1 ha</td>
<td>Lowland, marsh to north</td>
<td>1983-85</td>
<td>0.1m</td>
<td>0.6m</td>
<td>3.0m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faw Lane, Obsteley Aston and Woodside</td>
<td>HER1246 SM34698 SJ0231846</td>
<td>350290</td>
<td>308350</td>
<td>✓</td>
<td></td>
<td>0.5 ha</td>
<td>Lowland, entrance SW, NE</td>
<td>1983-85</td>
<td>2.0m</td>
<td>4m</td>
<td>0.2m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bomere Wood, Bayston Hill</td>
<td>HER099 SM302370 SJ01008000</td>
<td>350290</td>
<td>308350</td>
<td>✓</td>
<td></td>
<td>1.2 m</td>
<td>Lowland, narrow ridge between lake and marsh</td>
<td>2000 CAT</td>
<td>3m</td>
<td>20m</td>
<td>1.5m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bomere Heath, Pimhill, Woodhouse Farm, Pontesbury</td>
<td>HER0870 SJ03056516</td>
<td>340630</td>
<td>305860</td>
<td>✓</td>
<td></td>
<td>3.0 ha</td>
<td>Lowland, sub-rectangular</td>
<td>2000 CAT</td>
<td>3m</td>
<td>20m</td>
<td>1.5m</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1 (Continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Registration details</th>
<th>Easting</th>
<th>Northing</th>
<th>Uplavellate</th>
<th>Multivallate</th>
<th>Size</th>
<th>Topographic location</th>
<th>Excavation dates</th>
<th>Ditch depth</th>
<th>Ditch top width</th>
<th>Bank height</th>
<th>Bank width</th>
<th>Dating evidence</th>
<th>Other features</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Castle Ring, Worthen with Slehe</td>
<td>HER1367 SM16203 SJ57150109</td>
<td>337150</td>
<td>501090</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>3.8 ha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Norbury Bank, Clea St Margaret</td>
<td>HER180 SM19197 SC57588/71</td>
<td>357560</td>
<td>284710</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>3.2 ha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Stovesshill, Cound</td>
<td>HER1468 SJ5690354</td>
<td>358690</td>
<td>303840</td>
<td>✓</td>
<td>2 banks</td>
<td></td>
<td></td>
<td>3.1 ha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Caenol Camp, Cliburn with Broomton</td>
<td>HER1218 BM190135 SO27398552</td>
<td>327370</td>
<td>295320</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1.5 ha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Ritton Castle, Worthen with Slehe</td>
<td>HER1287 SM124901 SC3442077</td>
<td>334400</td>
<td>297700</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1 ha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Castle Ring, Stilton Hill, Ratlinghope</td>
<td>HER167 SM10126 SO4948779</td>
<td>340560</td>
<td>297790</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1 ha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Ratlinghope Camp, Ratlinghope</td>
<td>HER168 SM19125 SO4984731</td>
<td>340640</td>
<td>297310</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>1 ha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
important artefactual evidence, and has long been regarded as a place of particular significance and perhaps even the site of the later sub-Roman court of the Princes of Powys known as Pengwern. As at The Wall, The Berth has produced a blue bead, and it has also included a bronze cauldron and an Iron Age brooch, whilst slave chains have been found in the close environs. Evidence from The Wall has shown buildings in the interior including four post structures, usually interpreted as granaries, suggesting domestic occupation, but they have also been interpreted as excarnation platforms (Cunliffe 1995, 110–111). However, the control and storage of agricultural produce, stock animals and grain, has been a recurring objective for powerful elites through all periods, presumably amassed as dues or tax (such as the Roman *annona* and later church tithe system) collected from the surrounding area and kept for redistribution, acting as a symbol of their wealth and prestige. Romano-Celtic temples have been identified through a precinct (enclosed area), a *temenos* defined by ditches or walls and often containing evidence for material wealth. The discovery of a gold torc in the close vicinity of The Wall is thus an understandable reflection of such a presence, of a social elite, a tribal centre and a location of special significance for the tribe. Deposition within the Weald Moors of Bronze Age metalwork such as the Preston Hoard shows how, in common with other watery places, the area was already associated with special significance to prehistoric communities, and finds such as Lindow Man and the Whixall Moss bog bodies (Turner and Penney 1996) point to the darker side of social and religious custom for which peat wetlands were seen as important.

Analysis of the variable data available which has been used to compile Table 1 is far from scientific, but it allows some measure of comparison for The Wall. This analysis demonstrates that The Wall is one of the largest enclosures in Shropshire, and that its lowland location is atypical of the vast majority of enclosures. Although it has multiple banks and ditches it has not been designed to dominate, to control river valleys and ridgeway routes by being positioned on visible hilltops or spurs. Instead The Wall has been chosen because it is hidden within a wetland, a morass of alder fen, perhaps impenetrable to those who did not know the paths and watercourses by which this landscape could be navigated.

The Wall is intervisible with The Wrekin at c.10km. distance (Figures 11 and 12), and both have archaeological evidence for two main phases of construction; radiocarbon dating for the earlier phase at The Wrekin placed this event between the 7th and 5th centuries BC. Both appear to have been abandoned at the time of the Roman conquest, contrary to the evidence from several other ‘forts’, such as Llanymhoch and Bury Walls (Hawkstone), or from the enclosure at Castle Farm, Shifnal. This relationship between a tribal centre located in the sky at c.400m. AOD on the top of the isolated ridge that rises from the Midland Plain, with another tribal centre hidden amongst the peat wetlands and woodland of the Weald Moors is probably intentional. The contrast between the ‘living’ world, represented by the airy heights of The Wrekin, and the ‘other’ world of The Wall, located within the black waters and closed environment of the Weald Moors, provides a metaphor for human existence. We should therefore consider other interpretations for The Wall than that of a fort or defended settlement, and in the second part of this article an alternative hypothesis is presented.

![Figure 12](image-url) The view looking south from the northern ‘causeway’ bank, showing The Wrekin in the distance.
Part 2: Reconstructing and interpreting The Wall (by Caroline Malim)

Introduction

The opportunity in 2010 to research and design a series of information panels and on-site interpretation boards for The Wall required production of an archaeological reconstruction to show what the site might have looked like over 2000 years ago. The Wall reconstruction drawing is an artist’s interpretation based upon evidence put together from aerial photographs, earthwork survey, archaeological excavations, local wetland academic reports, documentary evidence and photos from site visits. Due to the size of the site (c.12 hectares) a bird’s eye view was necessary to show its full extent and to show it in its original landscape environment.

The reconstruction drawing was achieved using two main processes. A basic 3D graphic image produced in Google SketchUp which would enable me to draw to scale and then rotate the image on screen enabling accurate perspective from any angle and height, and the finished watercolour painting – of which there were two versions.

Producing the reconstruction was an interesting and thought-provoking journey which presented many questions about the site – its location and contemporary environment, its purpose and those who used it. This approach has allowed a fresh analysis and interpretation of the evidence which is described in the final part of this article.

Methodology

3D graphic:

Using the earthwork survey of the site as a base in Google SketchUp, I was able to reconstruct 3D earthworks based upon measurements and bank profiles suggested in the earthwork survey notes (Figure 2.1). Where banks had been ploughed away I turned to old air photographs which showed some of the missing earthworks still extant and others clearly visible as crop marks (Figure 2.2). Where pairs of banks joined to form a single one the air photos were not enough so I turned to other examples of Iron Age ramparts in the region – notably Old Oswestry Hillfort which, like The Wall, has substantially more banks on one side of the monument than the other.

Having reconstructed the banks, I set about positioning the two potential round houses that had been uncovered during the 1983 excavation (Bond 1991). I scaled down the site plan of the excavated trench and positioned it on the plan, extrapolated the diameter of the houses from the planned features and produced 3D models of them in situ.

A watercourse called the Strine cuts through the ramparts and what has been interpreted as a wide ‘causeway’ (SMR record 01108) to the site (shown in the foreground of Figure 2.1). This watercourse was however a later addition, being cut as part of the early 19th century drainage improvement scheme for the area (Leah et al. 1998). The old course of the Strine was plotted using a wetland survey of the area which mapped out the depth of the peat deposits and their moisture content.

A contour map was superimposed onto the 3D base to show the position and extent of the hill which rises 7m. above the island (Figure 2.3). The hill had been partially quarried for stone in the 18th century.

Two entranceways appear to be original, one to the north-east (in the foreground of Figure 2.1) and one to the south-west (upper left hand corner of Figure 2.1). The Wrekin is visible on the horizon from the north-eastern entrance (although not visible from this bird’s eye view) and the south-western entrance lies directly between these two points. The south-western entrance was disguised from the north-eastern entrance due to the in-turned shape of the earthwork wall – giving the appearance, from the north-east, of a continuous wall. It was noted by Bond (1991) that the north-east entrance ‘previously described as a causeway adjacent to the Strine Brook, is more doubtful’. He rightly noted that ‘there does not appear to have been any gap in the inner bank, though there is a break in the outer banks’.

The causeway itself was an integral part of the substantial outer wall which turns in at a right angle at this point to continue inwards until it joins the innermost bank. As Bond correctly observed, it is the gaps to the side of this feature (where two of the inner banks do not meet it) that constitute the entrance itself although, as he noted, it does not continue through the innermost bank as would be expected. The feature described as the causeway, however, allows easy access from the inner enclosure to the routes along the top of the inner and outer walls. This will be discussed later.

Google SketchUp provides the facility to ‘turn on’ the sun and adjust it to any time, day and month throughout the course of the year. This enables the artist to see the way in which light and shadow interact with a three-dimensional structure over a twelve month period. Naturally when the sun is at its lowest in the sky during the winter, shadows are longest and when it is highest in the sky, the shadows are shortest. The entrances discussed above were
Figure 2.1 Earthwork survey plan with 3D banks in the process of construction and the Stune in the foreground.
positioned in such a way that the shadows cast by the ends of the walls moved across and effectively ‘closed’ the entranceways during the period of the winter solstice and gradually ‘opened up’ until there was no shadow during the period of the summer solstice. This was a phenomenon I would not necessarily have thought of had I not seen it happen digitally on screen and it led me to wonder if this was a deliberate design feature or a coincidence.

Having assembled the data on the 3D image, it could be rotated on the computer screen. I settled on a composition that placed the causeway entrance at a 6 o’clock position in the foreground, as this felt more aesthetically pleasing to me. The image was then printed at a size that I could lightly trace onto watercolour paper.

The painting shows how The Wall is situated on what was once a natural island surrounded by a landscape of wooded marshland. The surrounding landscape with its uneven marshy ground, clumps of trees and hedges, and no known causeway to the site, formed a natural barrier, almost impenetrable. The site would not have been seen until one was close to the clearing around it, when it would have looked like a high stone wall – during the site visit some of the large flat stones cladding the outer face of the inner bank near the farmhouse were still visible in-situ. Facing stones were also noted during excavation as cladding both sides of the banks (Trans. Caradoc and Severn Valley Field Club, 1961/67). In the first reconstruction (Figure 2.4), the bird’s eye view of the ‘walls’ shows them shining brightly in the summer sunshine. There was no archaeological evidence found for a palisade on the banks, and given the already defensive nature of the landscape, the high walls and the fact that the outer ditches became waterlogged in wet months, giving the additional effect of moated defences, I decided not to include one.
The two roundhouses uncovered during the 1983 excavations were likely to have been part of a group with other structures. Guessing the appearance of the settlement was difficult and dependent upon the purpose of the monument – was it a farm, a village, or even a sacred site? The roundhouses found were large at c.11m. diameter (Bond 1991) and, if they were dwellings, could easily house a large family each. Alternatively the buildings could have served to hold large gatherings.

The painting shows the remoteness and inaccessibility of the site, and illustrates that it was not the kind of place an attacking force could easily get to. Both wheeled vehicles and beasts of burden would have found it well-nigh impossible to traverse the wooded marsh; even during the 16th century after some clearance of the ‘alders, willows, salleys and thorns’, farmers had to construct makeshift route ways for cattle using planks of wood or else drag them on their sides. (Leah et al. 1998).

The Wall, which lies in what was once Cornovii territory, was surrounded by water and trees, which reminded me of the Celtic belief in islands consecrated to gods and heroes, some of which like Caer Sidi (the entrance to the otherworld) appeared and disappeared at different times of the year, invisible to most people. The Wall was not a place one accidentally came by, but instead was eventually reached due to knowledge of a passage through the wooded marsh. It is possible that the course of the old Strine provided access to the north of the site and that might explain why this stretch of the monument, which is also the closest part of the site to the upland on the north side of the moor, has the most ramparts.

Analysis of ceramics found in Bond’s 1983 excavation trench, suggested that this part of the site was in use from the 3rd century BC and prior to the Roman period c.43AD (Morris 1991). A few sherds were identified as having come from vessels produced some 58km. away, indicating that the community living at The Wall was not totally cut off from the rest of society, suggesting interaction with trade routes nearby. This is backed up by the presence of very coarse pottery (VCP) sherds used for the transportation of salt, an expensive and multi-purpose commodity used for tasting food, making cheese, fixing dyes, and more.

The earliest evidence for post-Iron Age reoccupation at The Wall comes from a lease dated 1569 which states that the site was cleared of holly and oak trees for the creation of the tenement (Leah et al., 1998). This could be significant, as the holly and the oak were particularly sacred to the Celts and their presence might constitute the
vestiges of an ancient Nemeton or sacred grove where druids were known to worship. It is for this reason that the painting is shown with a wood around the base of the hill. The holly represented the winter sun and the oak represented the summer sun. During the Celtic fertility festival of Beltaine (1 May) representatives of each ‘sun’ would fight for supremacy to win the May Queen. The Oak King had to win because he represented the stronger of the two. (The summer sun was gaining strength to reach its peak at the summer solstice while the winter sun was already past its prime.)

Given the site’s relatively remote location, the small hill would have provided a vantage point over the surrounding wooded landscape to other high points on the horizon, such as the hill fort on The Wrekin, thought by some to be the capital of the Cornovii tribe. Beacons lit on these high points made it quick and easy to send and receive instantly coded messages across wide areas of the landscape. The Romans also used this form of communication. Such an experiment has been successfully carried out using 10 hill forts in North Wales and Cheshire, the furthest visual link crossing a distance of 25km. (15.5 miles) (Robinson, 2011). A beacon with a pillar of smoke was used in this reconstruction.

The second reconstruction (Figure 2.5) includes a larger settlement, palisades along the ramparts and a series of fields with animals grazing. This gives the impression of a farming community living within a fortified enclosure and fits with more ‘popular’ interpretations.

Wall Fort and The Classical Labyrinth

According to archaeological evidence, parts of The Wall had undergone at least three phases of construction (Pagett 1961–65). This reconstruction shows the layout as it might have looked in its final incarnation. However, rotation of the image, placing the causeway feature at the 6 o’clock position, was fundamental to my realisation that this and the problematic entrance adjacent to it were strikingly similar to entrances of ‘classical Labyrinths’ (Figure 2.6). I wondered if at an earlier phase the earthwork’s design had in fact been laid out as a labyrinth. If so, the functional, secular entrance which had already been recognised as doubtful suddenly made way for a long established and well known ritual entrance.

Figure 2.5 The second version of the reconstruction showing palisades, more housing and fields.
After completing the interpretation panels for the site, I was able to test the labyrinth theory by superimposing the route of the classical labyrinth onto the earthworks (Figure 2.7). What I found was that although its course changed slightly at a couple of locations and one of the inner walls was missing, it still fitted convincingly well enough to suggest that such a pattern might have formed an earlier design for the site. If so this would almost certainly indicate a sacred site of some importance to the region. The central part of the labyrinth is missing – perhaps removed during the Iron Age as part of phased modifications to the site as identified during excavation of the banks.

The classical labyrinth as a concept is over 4000 years old and can be found in America, Europe, Scandinavia and India where they are called Kote meaning Fort. The oldest surviving firmly datable images of classical labyrinths in Britain are Roman mosaics dating from the second to third centuries AD (Fisher and Gerster 2000, 36).

In 1968 Geoffrey Russell identified the earthworks twisting around the famous Glastonbury Tor in Somerset as being a possible classical labyrinth (Figure 2.8) forming a ceremonial route to the top. Some sections are missing and, as with the example at The Wall, the labyrinth at the Tor is distorted to fit the relief of the hill. Professor Rahtz who excavated on the Tor from 1964 to 1966 acknowledged that the theory was ‘worth considering’ (in Mann 1993), and ‘if the maze theory were demonstrated to be true’, he continued, ‘it would clearly be of the greatest relevance to the origins of Glastonbury as a religious centre’ (Pennick 1998, 174). Dating evidence for the Iron Age was found in Bond’s relatively small excavation within the enclosure at The Wall (Bond and Morris 1991), but no dating evidence was found during excavation of its banks (Pagett 1961–65), which are assumed to be Iron Age. A detailed scientific analysis of the banks at The Wall could provide a sequence of dates establishing when the banks were first constructed and which construction phases were contemporary with the Iron Age settlement already identified.

If The Wall is a classical labyrinth, it is fair to assume that there may be other monuments of this kind. Recognising and analysing such sites would certainly bring us closer to understanding the belief system of the Celts and how it was organised on a tribal, inter-tribal and even inter-national level. It might also shed light on how elements of earlier labyrinthine belief systems were accepted during the Iron Age.
A classical labyrinth is unicursal or one-pathed. The single path leads from the entrance to the goal at the centre and consists of an internal rotational seven circuit route, moving in an alternate clockwise and anti-clockwise motion. It is associated in the folklores, myths and legends of many cultures with fertility rites, and is often associated with a virgin, goddess or (May) queen at its centre. A man, hero, or king and his men, had to make the journey to the labyrinth’s centre in order to claim her for himself or the man whom he was championing. This journey, in some instances beset with challenges and obstacles, had to be performed without fault – failure to do so could result in death. Mazes can be known by different names but classical labyrinth names are associated with the city of Troy (Pennick 1998, 58). ‘The Walls of Troy,’ ‘Troy town’ or in Welsh Caerdroia (city of turns) are popular examples. Helen was the prize at the centre of Troy and, although the great (Bronze Age) hero Achilles did enter, he died fighting. The 1569 lease (Leah et al. 1998) names The Wall tenement as being known as the Walls. This undoubtedly refers to the original appearance of the stone-clad banks as walls but could there be any possibility that it was also a shortening of ‘The Walls of Troy’?

In Arthurian legend, Guinevere (a May queen) was abducted during the May Day (Beltaine) festival by the Holly King, Melwas, Lord of the Otherworld. Arthur, representing the Oak King, journeyed with his knights to Melwas’s wooden or wooded stronghold, where she was held captive, and he had to fight in single combat to claim her. This ‘Otherworld’, like the classical labyrinth, is said to have been divided into seven zones. In the Indian epic tale The Ramayana Prince Rama rescued his wife Sita from the demon Ravanna’s labyrinthine fortress by defeating the demon, and then making seven triumphal circuits around the fortress on his exit with her.

If The Wall was once a classical labyrinth it is possible to imagine this remote and well-nigh inaccessible site as being an important sacred destination. Folklore and mythology associated with the classical labyrinth would suggest that such a site was designed for ritual processions, feats of endurance and challenges to the death by special or chosen men, who came to take part at certain times of the year, rather than merely local or regional inhabitants. The prize was union with a ‘goddess’, maiden or (May) queen who represented fertility and procreation, probably also specially chosen by virtue of her birth, and/or lineage. Spectators would be able to watch and follow the progress of the warrior or warriors through the labyrinth from the safety of the walls above. An Etruscan terracotta wine jar (6th century BC) from Tragliatella, Italy, shows a procession of warriors and two horsemen leaving a classical labyrinth (inscribed TRUIA). On the other side of the labyrinth is a depiction of two men, each shown explicitly in the act of making love to a girl – confirming their success in the labyrinth. (Figure 2.9)
Interestingly, the classical labyrinth features in the creation story of the Papago and Pima tribes of Southern Arizona. It is the only classical labyrinth tradition that does not feature a woman at the centre. Instead it shows a man at the entrance (Figure 2.10). In this story the labyrinth is the woman or more specifically symbolic of a womb – only penetrable if one is pure and perfect (akin to the concept of the perfect knight of Arthurian legend):

The male figure outside, representing the human seed, can penetrate the womb, fertilize the ovum, and produce new life, which then emerges as a new birth or a reincarnated existence. Entry into the labyrinth gives new life to the man thus achieving reincarnation and eternal life. (Fisher and Gerster 2000, 20).

The labyrinth’s association with fertility and the victor’s immortality through reproduction with a ‘goddess’ would make the Celtic fertility feast of Beltaine on 1 May the most likely time for its use. Beltaine is most often identified with its hilltop bonfires, associated with the purification rites of cattle by driving them between burning pyres (and throwing sick ones onto the flames). What is more, in Scotland and Wales there was a long lasting Beltaine custom – believed to be a relic of human sacrifice – where a person would have to leap three times through the flames (Kightly 1986, 159). The Beltaine fires were believed to cleanse and fend off disease for the coming twelve months. Nevertheless, this still needs to be understood within the context of fertility because being pure, clean and protected from disease (i.e. with a good immune system) makes for healthier breeding – the fundamental purpose of Beltaine. It is possible to imagine a large beacon (or two) lit on the hilltop at The Wall, informing others watching from a distance that the rituals were in progress or successfully completed.

It is likely that if it was a sacred site other rituals would have been carried out throughout the year at The Wall, although these might not have involved the labyrinth. There would also be the day-to-day domestic and farming activities for those living there and perhaps grazing for animals within the labyrinth when it was not in use. More direct and convenient entranceways to the site would in all probability have been used by those who lived there because a lengthy labyrinthine access to the settlement would have been impractical.

The Glastonbury Tor and its labyrinth (which lay in the tribal territory of the Durotriges) has been linked with early Welsh poetic allusions to Caer Sidi (Pennick 1998, 172), the ‘turning’ or ‘spiral’ castle – a place in

![Figure 2.10 Basket work from Southern Arizona showing the man in the maze.](image-url)
pre-Christian mythology which housed a magical cauldron – variously interpreted as Cerridwen’s cauldron or womb, the cup of eternal life and the holy grail. *Caer Sidi* is also the doorway to *Annwn*, the Celtic Otherworld.

If the Tor was once a *Caer Sidi* its association with the grail probably derives from the ‘magical cauldron’ at the centre of the labyrinth. Sadly The Wall does not appear to have any myths or legends associated with its distant past, but this is probably due to a break in occupation at the site for some 600 years, preventing folk memories from being passed down by word of mouth.

Another site similar to The Wall is the Iron Age site at Whittington near Oswestry. It was surrounded by marshes and woodland and constituted a lowland island surrounded with multiple banks and ditches. These were utilised and almost certainly altered in parts when the Normans built a castle there, and although they are substantial in places they are more degraded than those at The Wall. However, to the west of the site there is a causeway type feature similar to the one at The Wall, which may point to the presence of another Classical Labyrinth. Interestingly the Welsh name for Old Oswestry Hillfort nearby is Caer Ogyrfan – said to be named after Guinevere’s father.

Whittington, like The Wall, also possesses a small (but in this instance manmade) hill which stands over 5m. high and could have been used for beacon fires to communicate with Old Oswestry hillfort nearby. Within the context of the Norman castle this has been interpreted as a viewing mount from which to enjoy the 14th century castle gardens (Brown 2003, 26). However these mounts were normally much smaller at about 2m. high and the chances of its being a motte have also been ruled out as being highly unlikely. According to Brown, ‘the sheer scale of the mount at Whittington castle makes some historians sceptical that this could be medieval and related to the pleasure garden’. There is the possibility, however, that this mount actually belonged to the Iron Age monument (possibly even a Bronze Age burial mound) and was utilised in the 14th century as a grander garden feature than would normally have been expected at the time.

Unlike The Wall, Whittington has seen the continuous occupation needed for the transmission of folk memory and according to local legend, the holy grail was kept in Whittington castle chapel. Taken literally, this legend in its Christian guise is fanciful and unconvincing, but given the possible presence of a pre-Christian *Caer Sidi* or Troy Town, with its tradition of a magical cauldron or maiden, the legend gains more credence as a clue to an earlier belief system at the site.

Whittington Castle ramparts, like those at The Wall, have not been dated and are assumed to be of Iron Age date (Brown 2003, 2). Apart from the legend associated with the site, another clue to Iron Age activity might be indicated by the discovery of ‘a curious, carved stone head’ whilst opening up the well in 1809 (Brown 2003, 30). Many examples of Iron Age stone heads have been found throughout Britain and Gaul, and they are often associated with shrines or sacred sites (see Green 2005, 24, 28, 36, 59, 61 and 77).

The Iron Age environment surrounding Whittington Castle and The Wall with their marshes and woods fit well with the descriptions of *Caer Sidi* being situated right alongside the world of the living, but invisible to most humans.

Two further discoveries near The Wall could provide further clues to its importance as a sacred site:

A twisted Iron Age gold torc (Figure 2.11), damaged and missing one of its terminals, was found very near The Wall. Interestingly it is the most westerly example of its type known to date and is very similar to ones found in Snettisham in Norfolk (Reavill, pers. comm.). Snettisham lies in what was once territory of the Iceni tribe. Its presence indicates not only the possibility of a high status warrior coming from another part of the country to this location, but also perhaps a sacrificial offering in the marshes nearby.

The second find is a blue glass bead, dating to the 1st Century BC (Figure 2.12), identified as Oldbury Type of Guido’s class 6 (Reavill, pers. comm.). It is decorated with three triple spirals or triskeles. The most famous Triskele is a rock carving at the Neolithic passage tomb of New Grange in Ireland which is illuminated by the sun during the winter solstice. It is an ancient symbol representing the three vortices or portals between this and

Figure 2.11 The Telford Torc found near The Wall. (Copyright: used with permission of the Portable Antiquities Scheme.)
the otherworld via birth, death and rebirth, which were believed to open up at three set times in the pre Christian calendar:

Imbolc = Birth (2 February). Often associated with the lambing season, but also a time when the goddess Brigid, Bride or Britannia was believed to have been born nine months after the fertility festival of Beltaine (1 May). Brigid was an important mother/fertility goddess throughout Britain and northern Europe. Children born at Imbolc were often referred to as the chosen ones or the gods’ children because they also came nine months after Beltaine. The festival, which encouraged promiscuous intercourse amongst the populace, was headed by the May king and queen who represented the god and goddess of all fertility and procreation, so all children born at Imbolc were regarded as their own offspring. With the coming of Christianity, Imbolc became Candlemas which celebrates the purification of the Virgin Mary after giving birth to Jesus.

Samain = Death (31 October). End of the Celtic year, and a time to communicate with the dead.

Winter Solstice or Yule = Rebirth (21 December). The re-birth of the sun after it reaches its lowest point in the sky and starts its gradual journey upwards towards the Summer Solstice in June.

The bead was discovered in what was once marshland near The Wall. It was a high status object and it is unlikely that its owner did not understand the significance of its decoration. Was the bead lost in transit? Or was it part of a sacrificial deposition in the marshes nearby?

Producing an artistic reconstruction based upon archaeological and documentary evidence is often an exciting journey in itself because the end result is not always a foregone conclusion. The shadow of the sun, a single glass bead, a chance conversation, or a short entry in a historic document can all contribute to the final ‘picture’. Nevertheless it is still an interpretation rather than a definitive statement and, as with all interpretations, it is open to debate.

Acknowledgements

Our thanks are given to Georgina Dobson and the Dobson family for commissioning the reconstruction drawing and interpretation boards through a grant from Natural England’s Higher Level Stewardship Scheme; to Imogen Sambrook and Wayne Davies of Natural England for administering the grant; to Andy Wigley and Penny Ward...
from Shropshire Council Archaeology for providing information on the site, for HER data and publications for other enclosures; to Peter Reavill for information from the Portable Antiquities Scheme; to Mark Leah for information on the North-West Wetlands Survey; to Allan Frost, Hugh Hannaford, James Lawson, Bob Meeson, Roger White, Liz Young and the staff of the Shropshire Archive Service for helping to find the 1960s archive; to Daniel Lockett and Cameron Moffat of Shropshire Museum Service, and Jacqueline Davenport, Graham Deacon, Alice Stacey, and Angharad Wicks of English Heritage for help in locating the 1983 archive and in looking for the 1975 earthwork survey.

Notes

1 See Pennick 1998, 58–9, quoting the Welsh history Drych y Prif Oesoedd, 1740, and P. Roberts, Cambrian Popular Antiquities, 1815.

References

Cunliffe, B., 1995, Iron Age Britain.
West Midlands Archaeological News Sheet, CBA Group 8, University of Birmingham.
The Shropshire Archaeological and Historical Society was founded in 1877 (as the Shropshire Archaeological and Natural History Society), and from that time it became, and has remained, the foremost continuous promoter of research into the archaeology and history of the county. The Society’s regularly published Transactions have become the journal of record for the county’s history and archaeology.

In its early years, and for long, the Society organized an annual excursion for its members. In recent times, however, that side of its activity has increased, and there is now a regular programme of summer excursions and a winter programme of lectures, for which speakers well qualified in their specialisms are engaged. Early in December there is also an annual social meeting, and from time to time day schools are organized—sometimes on topics such as industrial archaeology (so important in Shropshire) and sometimes on a subject of current interest such as that provided in 2009 by the Anglo-Saxon treasure found in Staffordshire.

In 1923 the Shropshire Parish Register Society (founded in 1897) amalgamated with the Archaeological Society, and the work of publishing the county’s parish registers was continued. After a lapse that work has been resumed, and the most recent achievement has been the publication of the Bishop’s Castle register. Work continues on other parishes, and the Society’s as yet unpublished transcripts are available for use.

In addition to its Transactions and the parish-register programme, the Society has published occasional monographs and other works: notable in recent years have been the cartularies (registers of property deeds) of Haughmond Abbey (1985; jointly with the University of Wales Press) and Lilleshall Abbey (1997); Dr. Baker’s Shrewsbury Abbey: Studies in the Archaeology and History of an Urban Abbey (2002); D. and R. Cromarty’s The Wealth of Shrewsbury (1993; a detailed study of early 14th-century Shrewsbury people from taxation records—which survive so abundantly in the Shrewsbury borough archive and so rarely elsewhere); H. D. G. Foxall’s Shropshire Field-Names (1980); and the historic county maps published by Robert Baugh in 1808 (1983) and by Christopher Greenwood in 1827 (2008). These maps, whose detail was unrivalled until the Ordnance Survey began work in Shropshire, give a vivid bird’s-eye view of the county before the great changes of the Victorian period. Greenwood’s map is available as paper sheets and on a CD. Further details of the Society’s publications for sale (most of them at a 10 per cent discount to members) appear elsewhere in this volume.

In addition to the Transactions members receive a twice yearly News Letter, which keeps them in touch with all the Society’s activities and work and with its programmes of excursions and lectures.

For further information about the Society, and how to join it, see:

www.shropshirearchaeology.org.uk
RULES

1. The Society shall be called "The Shropshire Archaeological and Historical Society (with which is incorporated The Shropshire Parish Register Society)"

2. The Society’s objects shall be the advancement of the education of the public in archaeological and historical investigation in Shropshire and the preservation of the county’s antiquities. In furtherance of those objects, but not otherwise, the Society shall have the power (i) to publish the results of historical research and archaeological excavation and editions of documentary material of local importance including parish registers, and (ii) to record archaeological discoveries.

3. Management of the Society shall be vested in the Council, which shall consist of the President, Vice-Presidents, Officers, and not more than twenty elected members. The President and Vice-Presidents shall be elected at an annual general meeting; they shall be elected for five years and shall be eligible for re-election. The Chairman, Secretary and Treasurer shall be elected at each annual general meeting; the other officers shall be elected by the Council and shall consist of a Membership Secretary, Editor, Editor of the Newsletter, Meetings and Field Meetings Secretary, Librarian, Publications Secretary, and any other officers deemed necessary by the Council. Officers shall act in an honorary capacity. Not more than twenty members of the Council shall be elected by the annual general meeting. Members of the retiring Council shall be eligible for re-election and their names may be proposed without previous notice; in the case of other candidates a proposal signed by four members of the Society must be sent to the Secretary not less than fourteen days before the annual general meeting. The Council may co-opt not more than five additional members for the year.

4. At Council meetings five members shall be a quorum.

5. The Council, through the Treasurer, shall present the audited accounts for the last complete year to the annual general meeting.

6. The Council shall determine what number of each publication shall be printed, including any complimentary offprints for contributors.

7. Candidates for membership of the Society may apply directly to the Membership Secretary who, on payment of the subscription, shall be empowered to accept membership on behalf of the Society.

8. Each member’s subscription shall become due on election or on 1st January and be paid to the Membership Secretary, and shall be the annual sum of £14 for individual members, £15 for family and institutional members, and £18 for overseas members, or such sums as the Society shall from time to time decide. If a member’s subscription shall be two years in arrears and then not paid after due reminder, that membership shall cease.

9. The Council shall have the power to elect honorary members of the Society.

10. Every member not in arrears of his or her annual subscription shall be entitled to one copy of the latest available Transactions to be published, and copies of other publications of the Society on such conditions as may be determined by the Council.

11. Applicants for membership under the age of 21 may apply for associate membership, for which the annual subscription shall be £1. Associate members shall enjoy all the rights of full members, except entitlement to free issues of the Transactions and occasional publications of the Society. Associate membership shall terminate at the end of the year in which the member becomes 21.

12. No alterations shall be made to the Society’s rules except by the annual general meeting or by an extraordinary general meeting called for that purpose by the Council. Any proposed alteration must be submitted to the Secretary in time to enable the Secretary to give members at least twenty-one days notice of the extraordinary general meeting. No amendment shall be made to the rules which would cause the Society to cease to be a charity at law.

13. The Society may be dissolved by a resolution passed by not less than two-thirds of those present with voting rights at either an annual general meeting or an extraordinary general meeting called for that purpose by the Council. Any proposed alteration must be submitted to the Secretary in time to enable the Secretary to give members at least twenty-one days notice of the extraordinary general meeting. No amendment shall be made to the rules which would cause the Society to cease to be a charity at law.